Phenylglyoxal

Phenylglyoxal
Names
IUPAC name
Phenylglyoxal
Other names
oxo(phenyl)acetaldehyde
1-phenylethanedione
Identifiers
1075-06-5 (monohydrate) YesY
1074-12-0 (anhydrous) N
ChemSpider 13470 N
Jmol interactive 3D Image
PubChem 14090
RTECS number KM5775180
UNII N45G3015PA YesY
Properties
C8H6O2
Molar mass 134.13 g/mol (anhydrous)
Appearance yellow liquid (anhydrous)
white crystals (hydrate)
Density ? g/cm3
Melting point 76 to 79 °C (169 to 174 °F; 349 to 352 K) (hydrate)
Boiling point 63 to 65 °C (145 to 149 °F; 336 to 338 K) (0.5 mmHg, anhydrous)
forms the hydrate
Solubility in other solvents common organic solvents
Hazards
Main hazards toxic
R-phrases 22-36/37/38
S-phrases 22-26-36
Related compounds
Related aldehydes
3,4-Dihydroxyphenylacetaldehyde

Methylglyoxal
Phenylacetaldehyde

Related compounds
benzil
glyoxal
acetophenone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Phenylglyoxal is the organic compound with the formula C6H5C(O)C(O)H. It contains both an aldehyde and a ketone functional group. It is yellow liquid when anhydrous but readily forms a colorless crystalline hydrate. It has been used as a reagent to modify the amino acid, arginine.[1]

Properties

Like some other aldehydes, phenylglyoxal polymerizes upon standing, as indicated by solidification of the liquid. Upon heating, this polymer "cracks" to give back the yellow aldehyde. Dissolution of phenylglyoxal in water gives crystals of the hydrate:

C6H5C(O)COH + H2O → C6H5C(O)CH(OH)2

Upon heating, the hydrate loses water and regenerates the anhydrous liquid.

Preparation

Phenylglyoxal was first prepared by thermal decomposition of the sulfite derivative of the oxime:[2]

C6H5C(O)CH(NOSO2H) + 2 H2O → C6H5C(O)CHO + NH4HSO4

More conveniently, it can be prepared from methyl benzoate by reaction with KCH2S(O)CH3 to give PhC(O)CH(SCH3)(OH), which is oxidized with copper(II) acetate.[3] Alternatively, it can also be prepared by oxidation of acetophenone with selenium dioxide.[4]

References

  1. Kenji Takahashi (1968). "The Reaction of Phenylglyoxal with Arginine Residues in Proteins". J. Biol. Chem. 243 (23): 6171–9. PMID 5723461.
  2. H. von Pechmann (1887). "Zur Spaltung der Isonitrosoverbindungen". Chem. Ber. 20 (2): 2904–2906. doi:10.1002/cber.188702002156.
  3. Mikol, G. J.; Russell, G. A. (1973). "Phenylglyoxal". Org. Synth.; Coll. Vol. 5, p. 937
  4. Riley, H. A.; Gray, A. R. (1943). "Phenylglyoxal". Org. Synth.; Coll. Vol. 2, p. 509
This article is issued from Wikipedia - version of the Monday, November 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.