Photoaffinity labeling

Photoaffinity labeling is a technique used to attach "labels" to the active site of a large molecule, especially a protein. The "label" attaches to the molecule loosely and reversibly, and has an inactive site which can be converted using photolysis into a highly reactive form, which causes the label to bind more permanently to the large molecule.[1][2] The technique was first described in the 1970s.[3] Molecules that have been used as labels in this process are often analogs of complex molecules, in which certain functional groups are replaced with an azide group.[4][5]

References

  1. Photoaffinity labeling
  2. Photoaffinity labeling, Gold Book
  3. Ruoho, A. E.; Kiefer, H.; Roeder, P. E.; Singer, S. J. (1973). "The mechanism of photoaffinity labeling". Proceedings of the National Academy of Sciences of the United States of America 70 (9): 2567–2571. doi:10.1073/pnas.70.9.2567. PMC 427057. PMID 4517671.
  4. Panov, M. S.; Voskresenska, V. D.; Ryazantsev, M. N.; Tarnovsky, A. N.; Wilson, R. M. (2013). "5-Azido-2-aminopyridine, a New Nitrene/Nitrenium Ion Photoaffinity Labeling Agent That Exhibits Reversible Intersystem Crossing between Singlet and Triplet Nitrenes". Journal of the American Chemical Society 135 (51): 19167–19179. doi:10.1021/ja405637b. PMID 24219134.
  5. Akiyama, S.; Cornwell, M. M.; Kuwano, M.; Pastan, I.; Gottesman, M. M. (1988). "Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog". Molecular Pharmacology 33 (2): 144–147. PMID 2893251.
This article is issued from Wikipedia - version of the Tuesday, December 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.