Pi Josephson junction

A Josephson Junction is a quantum mechanical device, which is made of two superconducting electrodes separated by a barrier (insulating tunnel barrier, thin normal metal, etc.). A \pi Josephson junction is a specific example of a Josephson junction which has a Josephson phase φ of \pi in the ground state i.e. when no external current or magnetic field is applied.

Background

The supercurrent Is through a conventional Josephson junction (JJ) is given by Is = Icsin(φ), where φ is the phase difference of the superconducting wave functions of the two electrodes, i.e. the Josephson phase.[1] The critical current Ic is the maximum supercurrent that can flow through the Josephson junction. In experiment, one usually applies some current through the Josephson junction and the junction reacts by changing the Josephson phase. From the above formula it is clear that the phase φ = arcsin(I/Ic), where I is the applied (super)current.

Since the phase is 2\pi-periodic, i.e. \phi and \phi+2\pi n are physically equivalent, without losing generality, we restrict the discussion below to the interval  0 \leq \phi < 2\pi.

When no current (I = 0) is passing through the Josephson junction, e.g. when the junction is disconnected, the junction is in the ground state and the Josephson phase across it is zero (φ = 0). The phase can also be \phi=\pi, also resulting in no current through the junction. It turns out that the state with \phi=\pi is unstable and corresponds to the Josephson energy maximum, while the state φ = 0 corresponds to the Josephson energy minimum and is a ground state.

In certain cases one may obtain a Josephson junction where the critical current is negative (Ic < 0). In this case, the first Josephson relation becomes

 I_s = -|I_c|\sin(\phi) = |I_c|\sin(\phi+\pi)

Obviously, the ground state of such a Josephson junction is \phi=\pi and corresponds to the Josephson energy minimum, while the conventional state φ = 0 is unstable and corresponds to the Josephson energy maximum. Such a Josephson junction with \phi=\pi in the ground state is called a \pi Josephson junction.

\pi Josephson junctions have quite unusual properties. For example, if one connects (shorts) the superconducting electrodes with the inductance L (e.g. superconducting wire), one may expect the spontaneous supercurrent circulating in the loop, passing through the junction and through inductance clockwise or counterclockwise. This supercurrent is spontaneous and belongs to the ground state of the system. The direction of its circulation is chosen at random. This supercurrent will of course induce a magnetic field which can be detected experimentally. The magnetic flux passing through the loop will have the value from 0 to a half of magnetic flux quanta, i.e. from 0 to Φ0/2, depending on the value of inductance L.

Technologies and physical principles

Historical developments

Theoretically, the first time the possibility of creating a \pi Josephson junction was discussed by Bulaevskii et al. ,[18] who considered a Josephson junction with paramagnetic scattering in the barrier. Almost one decade later, the possibility of having a \pi Josephson junction was discussed in the context of heavy fermion p-wave superconductors.[19]

Experimentally, the first \pi Josephson junction was a corner junction made of yttrium barium copper oxide (d-wave) and Pb (s-wave) superconductors.[11] The first unambiguous proof of a \pi Josephson junction with a ferromagnetic barrier was given only a decade later.[2] That work used a weak ferromagnet consisting of an copper-nickel alloy (CuxNi1-x, with x around 0.5) and optimized it so that the Curie temperature was close to the superconducting transition temperature of the superconducting niobium leads.

See also

References

  1. B. D. Josephson (1962). "Possible New Effects in Superconducting Tunnelling". Physics Letters 1 (7): 251. Bibcode:1962PhL.....1..251J. doi:10.1016/0031-9163(62)91369-0.
  2. 1 2 V.V.Ryazanov, V.A.Oboznov, A.Yu.Rusanov, A.V.Veretennikov, A.A.Golubov and J.Aarts (2001). "Coupling of two superconductors through a ferromagnet: evidence of a \pi-junction". Physical Review Letters 86 (11): 2427–30. arXiv:cond-mat/0008364. Bibcode:2001PhRvL..86.2427R. doi:10.1103/PhysRevLett.86.2427. PMID 11289946. delete character in |title= at position 70 (help)
  3. A. A. Bannykh, J. Pfeiffer, V. S. Stolyarov, I. E. Batov, V. V. Ryazanov, and M. Weides (2009). "Josephson tunnel junctions with a strong ferromagnetic interlayer". Physical Review B 79 (5): 054501. arXiv:0808.3332. Bibcode:2009PhRvB..79e4501B. doi:10.1103/PhysRevB.79.054501.
  4. J.W.A. Robinson, S. Piano, G. Burnell, C. Bell and M. G. Blamire (2006). "Critical Current Oscillations in Strong Ferromagnetic \pi Junctions". Physical Review Letters 97 (17): 177003. arXiv:cond-mat/0606067. Bibcode:2006PhRvL..97q7003R. doi:10.1103/PhysRevLett.97.177003. PMID 17155498. delete character in |title= at position 55 (help)
  5. T. Kontos, M. Aprili, J. Lesueur and X. Grison (2002). "Josephson Junction through a Thin Ferromagnetic Layer: Negative Coupling". Physical Review Letters 89 (13): 137007. Bibcode:2002PhRvL..89m7007K. doi:10.1103/PhysRevLett.89.137007. PMID 12225057.
  6. M. Weides, M. Kemmler, H. Kohlstedt, A. Buzdin, E. Goldobin, D. Koelle, and R. Kleiner (2006). "High quality ferromagnetic 0 and pi Josephson tunnel junctions". Applied Physics Letters 89 (12): 122511. arXiv:cond-mat/0604097. Bibcode:2006ApPhL..89l2511W. doi:10.1063/1.2356104.
  7. O. Vavra, S. Gazi, D. S. Golubovic, I. Vavra, J. Derer, J. Verbeeck, G. Van Tendeloo, V. V. Moshchalkov; Gaži; Golubović; Vávra; Dérer; Verbeeck; Van Tendeloo; Moshchalkov (2006). "0 and \pi phase Josephson coupling through an insulating barrier with magnetic impurities". Physical Review B 74 (2): 020502,. arXiv:cond-mat/0606513. Bibcode:2006PhRvB..74b0502V. doi:10.1103/PhysRevB.74.020502. delete character in |title= at position 7 (help)
  8. Tsuei, C. C.; Kirtley, J. R. (2000). "Pairing symmetry in cuprate superconductors". Reviews of Modern Physics 72 (4): 969–1016. Bibcode:2000RvMP...72..969T. doi:10.1103/RevModPhys.72.969.
  9. B. Chesca (1999). "Magnetic field dependencies of the critical current and of the resonant modes of dc SQUIDs fabricated from superconductors with s + idx^2-y^2 order-parameter symmetries". Annalen der Physik 8 (6): 511. Bibcode:1999AnP...511..511C. doi:10.1002/(SICI)1521-3889(199909)8:6<511::AID-ANDP511>3.0.CO;2-K.
  10. Schulz, R. R.; Chesca, B.; Goetz, B; Schneider, C.W.; Bielefeldt, A.; Hilgenkamp, H.; Mannhart, H.; Tsuei, J.; Tsuei, C.C. (2000). "Design and realization of an all d-wave dc π-superconducting quantum interference device". Applied Physics Letters 76 (7): 912. Bibcode:2000ApPhL..76..912S. doi:10.1063/1.125627.
  11. 1 2 Van Harlingen, D. J. (1995). "Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for dx^2-y^2 symmetry". Reviews of Modern Physics 67 (2): 515. Bibcode:1995RvMP...67..515V. doi:10.1103/RevModPhys.67.515.
  12. Smilde, H. J. H.; Ariando; Blank, D. H. A.; Gerritsma, G. J.; Hilgenkamp, H.; Rogalla, H. (2002). "d-Wave–Induced Josephson Current Counterflow in YBa_{2}Cu_{3}O_{7}/Nb Zigzag Junctions". Physical Review Letters 88 (5): 057004. Bibcode:2002PhRvL..88e7004S. doi:10.1103/PhysRevLett.88.057004. PMID 11863770.
  13. Hilgenkamp, Hans; Ariando; Smilde, Henk-Jan H.; Blank, Dave H. A.; Rijnders, Guus; Rogalla, Horst; Kirtley, John R.; Tsuei, Chang C. (2003). "Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays". Nature 422 (6927): 50–3. Bibcode:2003Natur.422...50H. doi:10.1038/nature01442. PMID 12621428.
  14. Ariando; Darminto, D.; Smilde, H. -J. H.; Leca, V.; Blank, D. H. A.; Rogalla, H.; Hilgenkamp, H. (2005). "Phase-Sensitive Order Parameter Symmetry Test Experiments Utilizing Nd_{2-x}Ce_{x}CuO_{4-y}/Nb Zigzag Junctions". Physical Review Letters 94 (16): 167001. arXiv:cond-mat/0503429. Bibcode:2005PhRvL..94p7001A. doi:10.1103/PhysRevLett.94.167001. PMID 15907157.
  15. Lombardi, F.; Tafuri, F.; Ricci, F.; Granozio, F. Miletto; Barone, A.; Testa, G.; Sarnelli, E; Kirtley, J. R.; Tsuei, C. C. (2002). "Intrinsic d-Wave Effects in YBa_{2}Cu_{3}O_{7-δ} Grain Boundary Josephson Junctions". Physical Review Letters 89 (20): 207001. Bibcode:2002PhRvL..89t7001L. doi:10.1103/PhysRevLett.89.207001. PMID 12443500.
  16. J. J. A. Baselmans, A. F. Morpurgo, B. J. Van Wees, T. M. Klapwijk; Morpurgo; Van Wees; Klapwijk (1999). "Reversing the direction of the supercurrent in a controllable Josephson junction". Nature 397 (6714): 43–45. Bibcode:1999Natur.397...43B. doi:10.1038/16204.
  17. J-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, M. Monthioux; Wernsdorfer; Bouchiat; Ondarçuhu; Monthioux (2006). "Carbon nanotube Superconducting Quantum Interference Device". Nature Nanotechnology 1 (1): 53–9. Bibcode:2006NatNa...1...53C. doi:10.1038/nnano.2006.54. PMID 18654142.
  18. L. N. Bulaevskii, V. V. Kuzii, A. A. Sobyanin; Kuziǐ; Sobyanin (1977). "Superconducting system with weak coupling to the current in the ground state". JETP Letters 25: 290–294,. Bibcode:1977JETPL..25..290B.
  19. V. B. Geshkenbein, A. I. Larkin, A. Barone; Larkin; Barone (1987). "Vortices with half magnetic flux quanta in heavy-fermion superconductors". Physical Review B 36: 235–238. Bibcode:1987PhRvB..36..235G. doi:10.1103/PhysRevB.36.235.
This article is issued from Wikipedia - version of the Tuesday, March 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.