Pneumatics

"Pneumatic" redirects here. For the highest order of humans in Gnosticism, see Pneumatic (Gnosticism).
Preserved Porter Locomotive Company No. 3290 of 1923.

Pneumatics is a branch of engineering that makes use of gas or pressurized air.

Pneumatic systems used extensively in industry are commonly powered by compressed air or compressed inert gases. A centrally located and electrically powered compressor powers cylinders, air motors, and other pneumatic devices. A pneumatic system controlled through manual or automatic solenoid valves is selected when it provides a lower cost, more flexible, or safer alternative to electric motors and actuators.

Pneumatics also has applications in dentistry, construction, mining, and other areas.

Examples of pneumatic systems and components

Gases used in pneumatic systems

Pneumatic systems in fixed installations, such as factories, use compressed air because a sustainable supply can be made by compressing atmospheric air. The air usually has moisture removed, and a small quantity of oil is added at the compressor to prevent corrosion and lubricate mechanical components.

Factory-plumbed pneumatic-power users need not worry about poisonous leakage, as the gas is usually just air. Smaller or stand-alone systems can use other compressed gases that present an asphyxiation hazard, such as nitrogen—often referred to as OFN (oxygen-free nitrogen) when supplied in cylinders.

Any compressed gas other than air is an asphyxiation hazard—including nitrogen, which makes up 78% of air. Compressed oxygen (approx. 21% of air) would not asphyxiate, but is not used in pneumatically-powered devices because it is a fire hazard, more expensive, and offers no performance advantage over air.

Portable pneumatic tools and small vehicles, such as Robot Wars machines and other hobbyist applications are often powered by compressed carbon dioxide, because containers designed to hold it such as soda stream canisters and fire extinguishers are readily available, and the phase change between liquid and gas makes it possible to obtain a larger volume of compressed gas from a lighter container than compressed air requires. Carbon dioxide is an asphyxiant and can be a freezing hazard if vented improperly.

Comparison to hydraulics

Both pneumatics and hydraulics are applications of fluid power. Pneumatics uses an easily compressible gas such as air or a suitable pure gas—while hydraulics uses relatively incompressible liquid media such as oil. Most industrial pneumatic applications use pressures of about 80 to 100 pounds per square inch (550 to 690 kPa). Hydraulics applications commonly use from 1,000 to 5,000 psi (6.9 to 34.5 MPa), but specialized applications may exceed 10,000 psi (69 MPa).

Advantages of pneumatics

Advantages of hydraulics

Pneumatic logic

Further information: Pneumatic circuit

Pneumatic logic systems (sometimes called air logic control) are sometimes used for controlling industrial processes, consisting of primary logic units like:

Pneumatic logic is a reliable and functional control method for industrial processes. In recent years, these systems have largely been replaced by electronic control systems in new installations because of the smaller size, lower cost, greater precision, and more powerful features of digital controls. Pneumatic devices are still used where upgrade cost, or safety factors dominate.[1]

See also

Notes

  1. KMC Controls. "Pneumatic to Digital: Open System Conversions" (PDF). Retrieved 5 October 2015.

References

External links

Look up pneumatics in Wiktionary, the free dictionary.
This article is issued from Wikipedia - version of the Monday, May 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.