Poison shyness

Poison shyness is a behaviour whereby an animal that has ingested a toxic substance subsequently avoids ingesting that substance again. Animals learn an association between stimulus characteristics, usually the taste or odor, of a toxic substance and its toxicity. This allows them to detect and avoid the toxin when it is next encountered. Poison shyness occurs naturally in animals, usually generalists, that have evolved the behaviour to avoid toxicosis. It is often observed as bait shyness during attempts at pest control, when poisoned baits for insects and mammals are ingested at sublethal doses; the target species subsequently detect and avoid these poisoned baits.[1] This learned behaviour is technically known as conditioned food aversion learning.[2]

In nature

For any organism to survive, it must have adaptive mechanisms to avoid toxicosis. In mammals, a variety of behavioral and physiological mechanisms have been identified that allow them to avoid being poisoned. First, there are innate rejection mechanisms such as the rejection of toxic materials that taste bitter to humans. Second, there are other physiologically adaptive responses such as vomiting or alterations in the digestion and processing of toxic materials. Third, there are learned aversions to distinctive foods if ingestion is followed by illness.

A typical experiment tested food aversion learning in squirrel monkeys (Saimiri sciureus) and common marmosets (Callithrix jacchus), using several kinds of cues. Both species showed one-trial learning with the visual cues of color and shape, whereas only the marmosets did so with an olfactory cue. Both species showed a tendency for quicker acquisition of the association with visual cues than with the olfactory cue. All individuals from both species were able to remember the significance of the visual cues, color and shape, even after 4 months. However, illness was not necessarily prerequisite for food avoidance learning in these species, for highly concentrated but non-toxic bitter and sour tastes also induced robust taste aversion learning and retention.[3]

In pest control and conservation

Conditioned taste aversion has been widely used as a method of pest control and conservation. These aversions have been induced in both predator and prey species.[4]

Examples

Rodents: Rats and mice develop bait shyness very readily; it can persist for weeks or months and may be transferred to nontoxic foods of similar types.[5] Thus, if poisons are used for control they must provide no sensation of illness following ingestion. For this purpose, baits containing anticoagulants such as Warfarin were long used; they kill relatively slowly through internal bleeding, which is not associated with ingestion. More recently a highly potent toxin attacking the central nervous system, Bromethalin, has been used. Again, with sub-lethal doses of this chemical, the animal cannot learn the association between the odour of the food and its toxicity, thereby preventing poison shyness from developing.[6]

Crows: Conditioned taste aversion has been used to control crow (Corvus brachyrhynchos) predation on eggs - a problem for bird sanctuaries and farmers with outdoor chickens. The researchers put a sickness-causing agent in several eggs, painted them green and then placed them where crows could eat them. After eating the tainted eggs, the crows avoided eating green eggs. The crows subsequently avoided eating green eggs whether they contained toxin or not. The crows also continued to eat unpainted and non-toxic chicken eggs [7][8] However, another study tested if carrion crow (Corvus corone) predation on little tern (Sterna albifrons) eggs could be decreased by conditioned taste aversion. The study failed to find an effect because the crows were able to distinguish treated eggs during handling, without consuming a significant amount of the illness-inducing compound.[9]

Quoll: In Australia, a critically endangered predator, the northern quoll (Dasyurus hallucatus) is threatened by the invasion of the highly toxic cane toad (Bufo marinus). Following toad invasion, quoll populations have become extinct across Northern Australia. A conditioned aversion to live toads in juvenile northern quolls was successfully established by feeding them a dead toad containing a nausea-inducing chemical (thiabendazole).[10]

Multiple predators: When surrogate eggs of the sandhill crane (Grus canadensis) were laced with an illness-producing substance, egg predation decreased in a location which contained multiple potential predators.[11]

Coyotes: Poisoned baits of meat left where coyotes can find them have been used to discourage coyotes from attacking sheep. Here, bait shyness is transferred from the pieces of meat an aversion to live sheep.[12] Bait shyness may sometimes be location specific and not transferred to different localities.[13]

Livestock protection

Taste aversions have been developed in wolves, coyotes, and other canids to protect livestock and vulnerable wildlife.[14] In 1974, it was reported that coyotes (Canis latrans) learned to avoid hamburger after eating hamburger treated with Lithium chloride and could transfer such a drug-induced aversion of LiCl-tainted sheep or rabbit (Sylvilagus sp.) flesh to the corresponding live prey.[15] Olfactory (cologne) and visual (a red collar on the sheep) cues increased the suppression of predation through conditioned learned aversion in coyotes, although this was for a limited duration.[16]

Grazing livestock frequently eat poisonous plants, and death often results. Behavioral adjustments by conditioned taste aversions may protect animals from over-ingestion of toxic plants. Three species of plants with different mechanisms of toxicity were tested for their ability to condition a taste aversion in sheep. Only woody aster conditioned a taste aversion indicating that conditioned aversions to selenium-containing plants help to deter consumption of such plants by grazing ruminants.[17]

Crop protection

The cultivation of woody plants (olive trees, grapevines, fruit trees, etc.) can benefit from having animals e.g. sheep and goats, grazing the same area as their faeces nourish the soil thereby reducing the use of herbicides and fertilisers. However, these same animals sometimes eat the crops. Lithium chloride has been used to develop conditioned taste aversion to olive leaves and shoots in sheep and goats.[18]

List of animals which show poison shyness

Below is an incomplete list of animals for which poison shyness or bait shyness has been documented in pest control:


See also

References

  1. 1 2 Naheed, G. and Khan, J. (1989). ""Poison shyness" and "bait shyness" developed by wild rats (Rattus rattus L.). I. Methods for eliminating "shyness" caused by barium carbonate poisoning". Applied Animal Behaviour Science 24 (2): 89–99. doi:10.1016/0168-1591(89)90037-3.
  2. Clapperton, B.K. (2006). A review of the current knowledge of rodent behaviour in relation to control devices (PDF). Science for Conservation. p. 263. ISBN 0-478-14065-7.
  3. Laska, M. and Metzker, K., (1998). "Food avoidance learning in squirrel monkeys and Common Marmosets". Learn Mem. 5 (3): 193–203. doi:10.1101/lm.5.3.193. PMC 313805. PMID 10454364.
  4. Gustavson, C.R., (1977). Comparative and field aspects of learned food aversions. In: Learning Mechanisms in Food Selection (eds L.M. Barker, M.R. Best and M. Domjan), pp. 632. BaylorUniversity Press,Waco, TX.
  5. Cowleys. "Rats, food, and bait shyness". Retrieved May 22, 2013.
  6. David E. Stevenson, et al., (1994). Synthesis of 2-fluoroethyl β-D-galactopyranoside and 2-fluoroethyl 6-0-β-D-galactopyranosyl-β-D-galactopyranoside from lactose using β-D-galactosidase, Carbohydrate Research, 256: 185-188
  7. Nicolaus, L.K., Cassel, J.F., Carlson, R.B. and Gustavson, C.R., (1983). Taste-aversion conditioning of crows to control predation on eggs. Science, 220: 212–214. DOI: 10.1126/science.220.4593.212
  8. Anon. "Taste aversion". Retrieved May 23, 2013.
  9. Catry T. and Granadeiro J.P., (2006). Failure of methiocarb to produce conditioned taste aversion in carrion crows consuming little tern eggs. Waterbirds, 29: 211-214
  10. O’Donnell, S., Webb, J.K. and Shine, R., (2010). Conditioned taste aversion enhances the survival of an endangered predator imperilled by a toxic invader. Journal of Applied Ecology, 47: 558-565. DOI: 10.1111/j.1365-2664.2010.01802.x
  11. Nicolaus, L.K. (1987). Conditioned aversions in a guild of egg predators: Implications for aposetism and prey defense mimicry. The American Midland Naturalist, 117: 405–419
  12. 1 2 Sterner, R.T., ( 1995). Cue enhancement of lithiumchloride-induced mutton/sheep aversions in coyotes. Great Plains Wildlife Damage Control Workshop Proceedings. Paper 451.
  13. 1 2 Avery, M. L., Pavelka, M.A., Bergman, D.L., Decker, D.G., Knittle, C.E. and Linz, G.M., (1995). Aversive conditioning to reduce raven predation on California Least Tern eggs. Colonial Waterbirds, 18: 131–138
  14. Gustavson, C.R. and Nicolaus, L.K., (1987). Taste aversion conditioning in wolves, coyotes, and other canids: retrospect and prospect. In: Man and Wolf: Advances, Issues, and Problems in Captive Wolf Research (ed H. Frank), pp. 169–203. Junk, Boston.
  15. Gustavson, C.R., Garcia, J., Hankins, W.G. and Rusiniak., K.W., (1974). Coyote predation control by aversive conditioning. Science, 184: 581-583
  16. Sterner, R.T., (1995). Cue enhancement of Lithium-Chloride-induced mutton/sheep aversions in coyotes. Great Plains Wildlife Damage Control Workshop Proceedings. Paper 451.
  17. Pfister, J.A., Gardner, D.R., Cheney, C.C., Panter, K.E. and Hall, J.0., (2010). The capability of several toxic plants to condition taste aversions in sheep. Small Ruminant Research, 90(1): 114-119. DOI:10.1016/j.smallrumres.2010.02.009
  18. Manuelian C.L., Albanell E., Salama A.A.K. and Caja G., (2010). Conditioned aversion to olive tree leaves (Olea europaea L.) in goats and sheep. Applied Animal Behaviour Science, 128: 45-49
  19. Rzoska, J., (1963). Bait shyness, a study in rat behaviour. British Journal of Animal Behaviour, 11: 128–135
  20. Suliman, S.M., Shurnake, S.A. and Jackson, W.B. (1984). Food preferences in the Nile rat, Arvicanthis niloticus (PDF). Tropical Pest Management 30(2). p. 151-158. Retrieved 4 April 2015.
  21. Prescott, C.V., El-Amin, V. and Smith, R.H. (1992). Calciferols and bait shyness in the laboratory rat. University of Nebraska, Lincoln. Retrieved 4 April 2015.
  22. "Properties of various poisons used to control possums.". Controlling Possums in Westland. Retrieved May 22, 2013.
  23. Ogilvie, S.C., Thomas, M.D., Fitzgerald, H. and Morgan, D.R., (1996). Sodium monofluoroacetate (1080) bait-shyness in a wild brushtail possum (Trichosurus vulpecula) population. Proc. 49th N.Z. Plant Protection Conf. 1996: 143-146
  24. Wedge, R. "Vole poisons". Retrieved May 22, 2013.
  25. Rao, A.M.K.M. and Prakash, I., (1980). Bait shyness among the house mouse Mus musculus bactrianus to zinc phosphide and RH-787. Indian Journal of Experimental Biology, 18(12): 1490–1491
  26. Howard, W.E., Marsh, R.E., and Cole, R.E., (1977). Duration of associative memory to toxic bait in deer mice. J. Wildl. Manage. 41: 484
This article is issued from Wikipedia - version of the Tuesday, March 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.