Positive polynomial

In mathematics, a positive polynomial on a particular set is a polynomial whose values are positive on that set.

Let p be a polynomial in n variables with real coefficients and let S be a subset of the n-dimensional Euclidean spacen. We say that:

For certain sets S, there exist algebraic descriptions of all polynomials that are positive (resp. non-negative, zero) on S. Any such description is called a positivstellensatz (resp. nichtnegativstellensatz, nullstellensatz.)

Examples

Generalizations

Similar results exist for trigonometric polynomials, matrix polynomials, polynomials in free variables, various quantum polynomials, etc.

References

Notes

  1. T. S. Motzkin, The arithmetic-geometric inequality. 1967 Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) pp. 205–224.
  2. E. Artin, Uber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99.
  3. B. Reznick, Uniform denominators in Hilbert's seventeenth problem. Math. Z. 220 (1995), no. 1, 75–97.
  4. G. Pólya, Über positive Darstellung von Polynomen Vierteljschr, Naturforsch. Ges. Zürich 73 (1928) 141--145, in: R.P. Boas (Ed.), Collected Papers Vol. 2, MIT Press, Cambridge, MA, 1974, pp. 309--313
  5. D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132 (1988), no. 1, 35--62.
  6. K. Schmüdgen, The K-moment problem for compact semi-algebraic sets. Math. Ann. 289 (1991), no. 2, 203–206.
  7. T. Wörmann Strikt Positive Polynome in der Semialgebraischen Geometrie, Univ. Dortmund 1998.
  8. M. Putinar, Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42 (1993), no. 3, 969–984.
  9. T. Jacobi, A representation theorem for certain partially ordered commutative rings. Math. Z. 237 (2001), no. 2, 259–273.
  10. Vasilescu, F.-H. Spectral measures and moment problems. Spectral analysis and its applications, 173--215, Theta Ser. Adv. Math., 2, Theta, Bucharest, 2003. See Theorem 1.3.1.
  11. C. Scheiderer, Sums of squares of regular functions on real algebraic varieties. Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069.
  12. C. Scheiderer, Sums of squares on real algebraic curves. Math. Z. 245 (2003), no. 4, 725–760.
  13. C. Scheiderer, Sums of squares on real algebraic surfaces. Manuscripta Math. 119 (2006), no. 4, 395–410.
This article is issued from Wikipedia - version of the Thursday, May 14, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.