Subgroup

This article is about the mathematical concept. For the galaxy-related concept, see galaxy group.

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is usually denoted HG, read as "H is a subgroup of G".

The trivial subgroup of any group is the subgroup {e} consisting of just the identity element.

A proper subgroup of a group G is a subgroup H which is a proper subset of G (i.e. HG). This is usually represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (i.e. {e} ≠ HG).[1][2]

If H is a subgroup of G, then G is sometimes called an overgroup of H.

The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair (G, ∗), usually to emphasize the operation ∗ when G carries multiple algebraic or other structures.

This article will write ab for ab, as is usual.

Basic properties of subgroups

G is the group \mathbb{Z}/8\mathbb{Z}, the integers mod 8 under addition. The subgroup H contains only 0 and 4, and is isomorphic to \mathbb{Z}/2\mathbb{Z}. There are four left cosets of H: H itself, 1+H, 2+H, and 3+H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. The index [G : H] is 4.

Cosets and Lagrange's theorem

Given a subgroup H and some a in G, we define the left coset aH = {ah : h in H}. Because a is invertible, the map φ : HaH given by φ(h) = ah is a bijection. Furthermore, every element of G is contained in precisely one left coset of H; the left cosets are the equivalence classes corresponding to the equivalence relation a1 ~ a2 if and only if a1−1a2 is in H. The number of left cosets of H is called the index of H in G and is denoted by [G : H].

Lagrange's theorem states that for a finite group G and a subgroup H,

 [ G : H ] = { |G| \over |H| }

where |G| and |H| denote the orders of G and H, respectively. In particular, the order of every subgroup of G (and the order of every element of G) must be a divisor of |G|.

Right cosets are defined analogously: Ha = {ha : h in H}. They are also the equivalence classes for a suitable equivalence relation and their number is equal to [G : H].

If aH = Ha for every a in G, then H is said to be a normal subgroup. Every subgroup of index 2 is normal: the left cosets, and also the right cosets, are simply the subgroup and its complement. More generally, if p is the lowest prime dividing the order of a finite group G, then any subgroup of index p (if such exists) is normal.

Example: Subgroups of Z8

Let G be the cyclic group Z8 whose elements are

G=\left\{0,2,4,6,1,3,5,7\right\}

and whose group operation is addition modulo eight. Its Cayley table is

+ 0 2 4 6 1 3 5 7
0 0 2 4 6 1 3 5 7
2 2 4 6 0 3 5 7 1
4 4 6 0 2 5 7 1 3
6 6 0 2 4 7 1 3 5
1 1 3 5 7 2 4 6 0
3 3 5 7 1 4 6 0 2
5 5 7 1 3 6 0 2 4
7 7 1 3 5 0 2 4 6

This group has two nontrivial subgroups: J={0,4} and H={0,2,4,6}, where J is also a subgroup of H. The Cayley table for H is the top-left quadrant of the Cayley table for G. The group G is cyclic, and so are its subgroups. In general, subgroups of cyclic groups are also cyclic.

Example: Subgroups of S4 (the symmetric group on 4 elements)

Every group has as many small subgroups as neutral elements on the main diagonal:

The trivial group and two-element groups Z2. These small subgroups are not counted in the following list.

The symmetric group S4 showing all permutations of 4 elements

12 elements

The alternating group A4 showing only the even permutations

Subgroups:

8 elements

 
Dihedral group of order 8

Subgroups:
 
Dihedral group of order 8

Subgroups:

6 elements

Symmetric group S3

Subgroup:
Symmetric group S3

Subgroup:
Symmetric group S3

Subgroup:

4 elements

Klein four-group
Klein four-group
Klein four-group
Cyclic group Z4
Cyclic group Z4

3 elements

Cyclic group Z3
Cyclic group Z3
Cyclic group Z3

Other examples

See also

Notes

  1. Hungerford (1974), p. 32
  2. Artin (2011), p. 43
  3. Jacobson (2009), p. 41

References

This article is issued from Wikipedia - version of the Saturday, March 26, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.