Puig subgroup

In mathematical finite group theory, the Puig subgroup, introduced by Puig (1976), is a characteristic subgroup of a p-group analogous to the Thompson subgroup.

Definition

If H is a subgroup of a group G, then LG(H) is the subgroup of G generated by the abelian subgroups normalized by H.

The subgroups Ln of G are defined recursively by

They have the property that

The Puig subgroup L(G) is the intersection of the subgroups Ln for n odd, and the subgroup L*(G) is the union of the subgroups Ln for n even.

Properties

Puig proved that if G is a (solvable) group of odd order, p is a prime, and S is a Sylow p-subgroup of G, and the p-core of G is trivial, then the center Z(L(S)) of the Puig subgroup of S is a normal subgroup of G.

References

This article is issued from Wikipedia - version of the Thursday, September 25, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.