q-Bessel polynomials

In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010,14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by [1]

y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} 
q^{-N} & -aq^{n} \\ 
0  \end{matrix} 
; q,qx \right)

Orthogonality



\sum_{k=0}^{\infty}(\frac{a^k}{(q;q)_n}*q^{k+1 \choose 2}*y_{m}*(q^k;a;q)*y_{n}*(q^k;a;q)=(q;q)_{n}*(-aq^n;q)_{\infty}\frac{ a^{n}*q^{n+1 \choose 2} }{1+aq^{2n}   }\delta_{mn}
[2]

Gallery

QBessel function abs complex 3D Maple plot
QBessel function Im complex 3D Maple plot
QBessel function Re complex 3D Maple plot
QBessel function abs density Maple plot
QBessel function Im density Maple plot
QBessel function Re density Maple plot

References

  1. Roelof Koekoek, Peter Lesky Rene Swarttouw,Hypergeometric Orthogonal Polynomials and their q-Analogues, p526 Springer 2010
  2. Roelof p527
This article is issued from Wikipedia - version of the Wednesday, April 08, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.