Quantum invariant
In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1] [2] [3]
List of invariants
- Finite type invariant
 - Kontsevich invariant
 - Kashaev's invariant
 - Witten–Reshetikhin–Turaev invariant (Chern–Simons)
 - Invariant differential operator[4]
 - Rozansky–Witten invariant
 - Vassiliev knot invariant
 - Dehn invariant
 - LMO invariant [5]
 - Turaev–Viro invariant
 - Dijkgraaf–Witten invariant [6]
 - Reshetikhin–Turaev invariant
 - Tau-invariant
 - I-Invariant
 - Klein J-invariant
 - Quantum isotopy invariant [7]
 - Ermakov–Lewis invariant
 - Hermitian invariant
 - Goussarov–Habiro theory of finite-type invariant
 - Linear quantum invariant (orthogonal function invariant)
 - Murakami–Ohtsuki TQFT
 - Generalized Casson invariant
 - Casson-Walker invariant
 - Khovanov–Rozansky invariant
 - HOMFLY polynomial
 - K-theory invariants
 - Atiyah–Patodi–Singer eta invariant
 - Link invariant [8]
 - Casson invariant
 - Seiberg–Witten invariant
 - Gromov–Witten invariant
 - Arf invariant
 - Hopf invariant
 
See also
- Invariant theory
 - Framed knot
 - Chern–Simons theory
 - Algebraic geometry
 - Seifert surface
 - Geometric invariant theory
 
References
- ↑ Reshetikhin, N. & Turaev, V. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Invent. Math. 103 (1): 547. doi:10.1007/BF01239527. Retrieved 4 December 2012.
 - ↑ Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
 - ↑ Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
 - ↑ [math/0406194] Invariant differential operators for quantum symmetric spaces, II
 - ↑ [math/0009222v1] Topological quantum field theory and hyperk\"ahler geometry
 - ↑ http://hal.archives-ouvertes.fr/docs/00/09/02/99/PDF/equality_arxiv_1.pdf
 - ↑ http://knot.kaist.ac.kr/7thkgtf/Lawton1.pdf
 - ↑ Invariants of 3-manifolds via link polynomials and quantum groups - Springer
 
Further reading
- Freedman, Michael H. (1990). Topology of 4-manifolds. Princeton, N.J: Princeton University Press. ISBN 0691085773.
 - Ohtsuki, Tomotada (December 2001). Quantum Invariants. World Scientific Publishing Company. ISBN 9789810246754.
 
External links
This article is issued from Wikipedia - version of the Sunday, April 17, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.