Quartic threefold
In algebraic geometry, a quartic threefold is a degree 4 hypersurface of dimension 3 in 4-dimensional projective space. Iskovskih & Manin (1971) showed that all non-singular quartic threefolds are irrational, though some of them are unirational.
Examples
References
- Iskovskih, V. A.; Manin, Ju. I. (1971), "Three-dimensional quartics and counterexamples to the Lüroth problem", Matematicheskii Sbornik, Novaya Seriya 86: 140–166, doi:10.1070/SM1971v015n01ABEH001536, MR 0291172
This article is issued from Wikipedia - version of the Thursday, October 15, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.