Quasi-continuous function
In mathematics, the notion of a quasi-continuous function is similar to, but weaker than, the notion of a continuous function. All continuous functions are quasi-continuous but the converse is not true in general.
Definition
Let be a topological space. A real-valued function is quasi-continuous at a point if for any every and any open neighborhood of there is a non-empty open set such that
Note that in the above definition, it is not necessary that .
Properties
- If is continuous then is quasi-continuous
- If is continuous and is quasi-continuous, then is quasi-continuous.
Example
Consider the function defined by whenever and whenever . Clearly f is continuous everywhere except at x=0, thus quasi-continuous everywhere except at x=0. At x=0, take any open neighborhood U of x. Then there exists an open set such that . Clearly this yields thus f is quasi-continuous.
References
- Jan Borsik (2007–2008). "Points of Continuity, Quasi-continuity, cliquishness, and Upper and Lower Quasi-continuity". Real Analysis Exchange 33 (2): 339–350.
This article is issued from Wikipedia - version of the Thursday, February 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.