Radioactive scrap metal

Radioactive scrap metal is created when radioactive material enters the metal recycling process and contaminates scrap metal.

Overview

A "lost source accident"[1][2] occurs when a radioactive object is lost or stolen. Such objects may end up in the scrap metal industry, if people mistake them for harmless bits of metal.[3] The International Atomic Energy Agency has provided guides for scrap metal collectors on what a sealed source might look like.[4][5] The best known example of this type of event is the Goiânia accident, in Brazil.

While some lost source accidents have not involved the scrap metal industry, they are still good examples of the likely scale and scope of a lost source accident. For example, the Red Army left sources behind in Lilo. Another case occurred at Yanango where an 192Ir radiography source was lost and at Gilan, Iran a radiography source harmed a welder.[6]

Radioactive sources have a wide range of uses in medicine and industry, it is common for the design (and nature) of a source to be tailored to the application so it is impossible to state with confidence what the "typical" source looks like or contains. For instance, antistatic devices include beta and alpha emitters: polonium containing devices have been used to eliminate static electricity in such devices as paint spraying equipment.[7] An overview of the gamma sources used for radiography can be seen at Radiographic equipment, and it is reasonable to consider this to be a good overview of small to moderate gamma sources.

Examples

Physical and chemical compositions

The cleanup operation for the Goiânia accident[19] was difficult both because the source containment had been opened, and the radioactive material was water-soluble.

In 1983, a different incident in Mexico wherein cobalt-60 was spilled in an otherwise similar exposure led to a very different pattern of contamination, since the cobalt in such a source is normally in the form of cobalt metal alloyed with some nickel to improve the mechanical properties of the radioactive metal. If such a source is abused, then the cobalt metal fragments do not tend to dissolve in water or become very mobile. If a cobalt or iridium source is lost at a ferrous metal scrapyard then it is often the case that the source will enter a furnace, the radioactive metal will melt and contaminate the steel from this furnace. In Mexico, some buildings have been demolished because of the level of cobalt-60 in the steel used to make them. Also, some of the steel which was rendered radioactive in the Mexican event was used to make legs for 1400 tables.[14]

Source melting

In the case of some high-value scrap metals it is possible to decontaminate the material, but this is best done long before the metal goes to a scrap yard.[20][21]

Ferrous scrap

In the case of a caesium source being melted in an electric arc furnace used for steel scrap, it is more likely that the caesium will contaminate the fly ash or dust from the furnace, while radium is likely to stay in the ash or slag. The United States Environmental Protection Agency provide data about the fate of different contaminating elements in a scrap furnace.[22] Four different fates for the element exist: the element can stay in the metal (as with cobalt and ruthenium); the element can enter the slag (as in lanthanides, actinides and radium); the element can enter the furnace dust or fly ash (as with caesium), which accounts for around 5%; or the element can leave the furnace and pass through the bag house to enter the air (as with iodine).

Aluminium scrap

It is normal to place silicon, aluminium scrap and flux in a furnace. This is heated to form molten aluminium. From the furnace three main streams are obtained, metal product, dross (metal oxides and halides which are skimmed off the molten metal product) and off gases which go to the baghouse. The cooled waste gasses are then allowed out into the environment.

Copper scrap

It is normal that good-quality scrap copper, such as that from a nuclear plant, is refined in one furnace before being refined further in an electrochemical process. The furnace generates impure metal, slag, dust and gases. The dust accumulates in a bag house, while the gases are vented to the atmosphere. The impure metal from the furnace may be further refined in an electrochemical process.

The fates of different elements present in copper scrap which is melted in a furnace. The average of the two extremes is shown and the error bars indicate the possible limits. The elements present in the scrap end up in different proportions in the impure metal, the slag, the bag-house dust or the exhaust gases that leave the plant via the stack

If the copper refinery includes an electrochemical process after the furnace, then unwanted elements are removed from the impure metal and deposited as anode slime.

The fates of different elements present in copper scrap which is melted in a furnace and then electrorefined. The average of the two extremes is shown and the error bars indicate the possible limits. The elements in the scrap end up in different proportions in the refined copper metal, the slag, the bag-house dust, the exhaust gases that leave the plant via the stack, or the anode slime

See also

References

  1. P Ortiz, V Friedrich, J Wheatley and M Oresegun, Lost & Found Dangers - Orphan Radiation Sources Raise Global Concerns, IAEA Bulletin 41: 18 (1999)
  2. Greta Joy Dicus, USA Perspectives - Safety & Security of Radioactive Sources, IAEA Bulletin 41: 22 (1999)
  3. D M Smith, Radioactive Material in Scrap Metal - The UK Approach, Health & Safety Executive, Midlands Region Specialist Group
  4. Could that be a sealed radioactive source?, IAEA
  5. Reducing Risks in the Scrap Metal Industry, IAEA
  6. The Radiological Accident in Gilan, IAEA (2002)
  7. College breaches radioactive regulations, BBC News, 12 March 2002
  8. Poster Issued by the New York Department of Health (ca. 1981)
  9. Chiu Yu-Tzu (Sep 9, 2003). "AEC urged to complete radioactive-rebar probe". Taipei Times. Retrieved 2011-03-20.
  10. 1 2 Chiu Yu-Tzu (Apr 29, 2001). "Radioactive rebar linked to cancer". Taipei Times. Retrieved 2011-03-20.
  11. Chen, W.L.; Luan, Y.C.; Shieh, M.C.; Chen, S.T.; Kung, H.T.; Soong, K.L; Yeh, Y.C.; Chou, T.S.; Wu, J.T.; Sun, C.P.; Deng, W.P.; Wu, M.F.; Shen, M.L. (2004). "Effects of Cobalt-60 Exposure on Health of Taiwan Residents Suggest New Approach Needed in Radiation Protection" (PDF). ecolo.org. Retrieved 2011-03-20. Note that ecolo.org and authors of the paper are not associated with one another.
  12. Hwang, S-L; H-R Guo; W-A Hsieh; J-S Hwang; S-D Lee; J-L Tang; C-C Chen; T-C Chang; J-D Wang; W P Chang (December 2006). "Cancer risks in a population with prolonged low dose-rate gamma-radiation exposure in radiocontaminated buildings, 1983-2002". International Journal of Radiation Biology 82 (12): 84958. doi:10.1080/09553000601085980. PMID 17178625. Retrieved 2008-12-13.
  13. Hwang, S-L; J-S Hwang; Y-T Yang; W A Hsieh; T-C Chang; H-R Guo; M-H Tsai; J-L Tang; I-F Lin; W P Chang. "Estimates of Relative Risks for Cancers in a Population after Prolonged Low-Dose-Rate Radiation Exposure: A Follow-up Assessment from 1983 to 2005". Radiation Research 170 (2): 143–148. doi:10.1667/RR0732.1. PMID 18666807. Retrieved 2011-12-04.
  14. 1 2 "El Cobalto". Bordering the Future. Texas Comptroller of Public Accounts. July 1998. Archived from the original on 2008-03-14.
  15. Radioactive Scrap Metal Nuclear Free Local Authorities
  16. The Radiological Accident in Samut Prakarn, IAEA
  17. Curry, Andrew (2011-10-21). "Why Is This Cargo Container Emitting So Much Radiation?". Wired.com. Retrieved 2011-11-03.
  18. "Asos Belts Seized Over Radioactive Studs". Sky News. 28 May 2013. Retrieved 2013-06-29.
  19. The Radiological Accident in Goiânia, IAEA Vienna (1988)
  20. http://www.earthvision.net/industryprograms/pdfs/dd/30170.pdf
  21. (PDF) http://web.archive.org/web/20121018171358/http://www.epa.gov/radiation/docs/cleanmetals/tsd/scrap_tsd_041802_ch6a.pdf. Archived from the original (PDF) on October 18, 2012. Retrieved September 17, 2006. Missing or empty |title= (help)

External links

This article is issued from Wikipedia - version of the Tuesday, March 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.