Radon space
In mathematics, a Radon space, named after Johann Radon, is a topological space such that every Borel probability measure on M is inner regular. Since a probability measure is globally finite, and hence a locally finite measure, every probability measure on a Radon space is also a Radon measure. In particular a separable metric space (M, d) is a Radon space.
References
- Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Basel: ETH Zürich, Birkhäuser Verlag. ISBN 3-7643-2428-7.
This article is issued from Wikipedia - version of the Wednesday, August 12, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.