Rogers–Ramanujan continued fraction

The RogersRamanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

Domain coloring representation of the convergent  A_{400}(q)/B_{400}(q) of the function  q^{-1/5}R(q), where  R(q) is the Rogers–Ramanujan continued fraction.

Definition

Representation of the approximation  q^{1/5}A_{400}(q)/B_{400}(q) of the Rogers–Ramanujan continued fraction.

Given the functions G(q) and H(q) appearing in the Rogers–Ramanujan identities,

\begin{align}G(q) 
&= \sum_{n=0}^\infty \frac {q^{n^2}} {(1-q)(1-q^2)\dots(1-q^k)} =\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty}\\
&= \prod_{n=1}^\infty \frac{1}{(1-q^{5n-1})(1-q^{5n-4})}\\
&=\sqrt[60]{qj}\,_2F_1\left(-\tfrac{1}{60},\tfrac{19}{60};\tfrac{4}{5};\tfrac{1728}{j}\right)\\
&=\sqrt[60]{q\left(j-1728\right)}\,_2F_1\left(-\tfrac{1}{60},\tfrac{29}{60};\tfrac{4}{5};-\tfrac{1728}{j-1728}\right)\\
&= 1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots
\end{align}

and,

\begin{align}H(q) 
&= \sum_{n=0}^\infty \frac {q^{n^2+n}} {(1-q)(1-q^2)\dots(1-q^k)}  =\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty}\\
&= \prod_{n=1}^\infty \frac{1}{(1-q^{5n-2})(1-q^{5n-3})}\\
&=\frac{1}{\sqrt[60]{q^{11}j^{11}}}\,_2F_1\left(\tfrac{11}{60},\tfrac{31}{60};\tfrac{6}{5};\tfrac{1728}{j}\right)\\
&=\frac{1}{\sqrt[60]{q^{11}\left(j-1728\right)^{11}}}\,_2F_1\left(\tfrac{11}{60},\tfrac{41}{60};\tfrac{6}{5};-\tfrac{1728}{j-1728}\right)\\
&= 1+q^2 +q^3 +q^4+q^5 +2q^6+2q^7+\cdots
\end{align}

A003114 and A003106, respectively, where (a;q)_\infty denotes the infinite q-Pochhammer symbol, j is the j-function, and 2F1 is the hypergeometric function, then the Rogers–Ramanujan continued fraction is,

\begin{align}R(q) 
&= \frac{q^{\frac{11}{60}}H(q)}{q^{-\frac{1}{60}}G(q)} = q^{\frac{1}{5}}\prod_{n=1}^\infty \frac{(1-q^{5n-1})(1-q^{5n-4})}{(1-q^{5n-2})(1-q^{5n-3})}\\ 
&= \cfrac{q^{1/5}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\ddots}}}}
\end{align}

Modular functions

If q=e^{2\pi{\rm{i}}\tau}, then q^{-\frac{1}{60}}G(q) and q^{\frac{11}{60}}H(q), as well as their quotient R(q), are modular functions of \tau. Since they have integral coefficients, the theory of complex multiplication implies that their values for \tau an imaginary quadratic irrational are algebraic numbers that can be evaluated explicitly.

Examples

R\big(e^{-2\pi}\big) = \cfrac{e^{-\frac{2\pi}{5}}}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\ddots}}} = {\sqrt{5+\sqrt{5}\over 2}-\phi}


R\big(e^{-2\sqrt{5}\pi}\big) = \cfrac{e^{-\frac{2\pi}{\sqrt5}}}{1+\cfrac{e^{-2\pi\sqrt{5}}}{1 + \cfrac{e^{-4\pi\sqrt{5}}}{1+\ddots}}} = \frac{\sqrt{5}}{1+\big(5^{3/4} (\phi-1)^{5/2}-1\big)^{1/5}} - {\phi}

where \phi=\frac{1+\sqrt5}{2} is the golden ratio.

Relation to modular forms

It can be related to the Dedekind eta function, a modular form of weight 1/2, as,[1]

\frac{1}{R(q)}-R(q) = \frac{\eta(\frac{\tau}{5})}{\eta(5\tau)}+1
\frac{1}{R^5(q)}-R^5(q) = \left[\frac{\eta(\tau)}{\eta(5\tau)}\right]^6+11

Relation to j-function

Among the many formulas of the j-function, one is,

j(\tau) = \frac{(x^2+10x+5)^3}{x}

where,

x = \left[\frac{\sqrt{5}\,\eta(5\tau)}{\eta(\tau)}\right]^6

Eliminating the eta quotient, one can then express j(τ) in terms of r =R(q) as,

j(\tau) = -\frac{(r^{20}-228r^{15}+494r^{10}+228r^5+1)^3}{r^5(r^{10}+11r^5-1)^5}


j(\tau)-1728 = -\frac{(r^{30}+ 522r^{25}- 10005 r^{20}- 10005 r^{10}- 522 r^{5}+1)^2}{r^5(r^{10}+ 11 r^5-1)^5}

where the numerator and denominator are polynomial invariants of the icosahedron. Using the modular equation between R(q) and R(q^5), one finds that,

j(5\tau) = -\frac{(r^{20}+12r^{15}+14r^{10}-12r^5+1)^3}{r^{25}(r^{10}+11r^5-1)}

letz=r^5-\frac{1}{r^5},thenj(5\tau) = -\frac{\left(z^2+12z+16\right)^3}{z+11}

where,

z_{\infty}= -\left[\frac{\sqrt{5}\,\eta(25\tau)}{\eta(5\tau)}\right]^6-11,z_0=-\left[\frac{\eta(\tau)}{\eta(5\tau)}\right]^6-11,z_1=\left[\frac{\eta(\frac{5\tau+2}{5})}{\eta(5\tau)}\right]^6-11,z_2=-\left[\frac{\eta(\frac{5\tau+4}{5})}{\eta(5\tau)}\right]^6-11,z_3=\left[\frac{\eta(\frac{5\tau+6}{5})}{\eta(5\tau)}\right]^6-11,z_4=-\left[\frac{\eta(\frac{5\tau+8}{5})}{\eta(5\tau)}\right]^6-11

which in fact is the j-invariant of the elliptic curve,

y^2+(1+r^5)xy+r^5y=x^3+r^5x^2

parameterized by the non-cusp points of the modular curve X_1(5).

Functional equation

For convenience, one can also use the notation r(\tau) = R(q) when q = e2πiτ. While other modular functions like the j-invariant satisfies,

j(-\tfrac{1}{\tau}) = j(\tau)

and the Dedekind eta function has,

\eta(-\tfrac{1}{\tau}) =\sqrt{-i\tau}\, \eta(\tau)

the functional equation of the Rogers–Ramanujan continued fraction involves[2] the golden ratio \phi,

r(-\tfrac{1}{\tau}) = \frac{1-\phi\,r(\tau)}{\phi+r(\tau)}

Incidentally,

r(\tfrac{7+i}{10}) = i

Modular equations

There are modular equations between R(q) and R(q^n). Elegant ones for small prime n are as follows.[3]

For n = 2, let u=R(q) and v=R(q^2), then v-u^2 = (v+u^2)uv^2.


For n = 3, let u=R(q) and v=R(q^3), then (v-u^3)(1+uv^3) = 3u^2v^2.


For n = 5, let u=R(q) and v=R(q^5), then (v^4-3v^3+4v^2-2v+1)v=(v^4+2v^3+4v^2+3v+1)u^5.


For n = 11, let u=R(q) and v=R(q^{11}), then uv(u^{10}+11u^5-1)(v^{10}+11v^5-1) = (u-v)^{12}.


Regarding n = 5, note that v^{10}+11v^5-1=(v^2+v-1)(v^4-3v^3+4v^2-2v+1)(v^4+2v^3+4v^2+3v+1).

Other results

Ramanujan found many other interesting results regarding R(q).[4] Let u=R(q^a), v=R(q^b), and \phi as the golden ratio.

If ab=4\pi^2, then (u+\phi)(v+\phi)=\sqrt{5}\,\phi.


If 5ab=4\pi^2, then (u^5+\phi^5)(v^5+\phi^5)=5\sqrt{5}\,\phi^5.

The powers of R(q) also can be expressed in unusual ways. For its cube,

R^3(q) = \frac{\sum_{n=0}^\infty\frac{q^{2n}}{1-q^{5n+2}}-\sum_{n=0}^\infty\frac{q^{3n+1}}{1-q^{5n+3}} }{\sum_{n=0}^\infty\frac{q^{n}}{1-q^{5n+1}}-\sum_{n=0}^\infty\frac{q^{4n+3}}{1-q^{5n+4}} }

For its fifth power, let w=R(q)R^2(q^2), then,

R^5(q) = w\left(\frac{1-w}{1+w}\right)^2,\;\; R^5(q^2) = w^2\left(\frac{1+w}{1-w}\right)

References

  1. Duke, W. "Continued Fractions and Modular Functions", http://www.math.ucla.edu/~wdduke/preprints/bams4.pdf
  2. Duke, W. "Continued Fractions and Modular Functions" (p.9)
  3. Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction", http://www.math.uiuc.edu/~berndt/articles/rrcf.pdf
  4. Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"

External links

This article is issued from Wikipedia - version of the Friday, July 17, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.