Raviart–Thomas basis functions

In applied mathematics, Raviart–Thomas basis functions are vector basis functions used in finite element and boundary element methods. They are regularly used as basis functions when working in electromagnetics. They are sometimes called Rao-Wilton-Glisson basis functions.[1]

The space \mathrm{RT}_q spanned by the Raviart–Thomas basis functions of order q is the smallest polynomial space such that the divergence maps \mathrm{RT}_q onto \mathrm{P}_q, the space of piecewise polynomials of order q.[2]

Order 0 Raviart-Thomas Basis Functions in 2D

In two-dimensional space, the lowest order Raviart Thomas space, \mathrm{RT}_0, has degrees of freedom on the edges of the elements of the finite element mesh. The nth edge has an associated basis function defined by[3]

\mathbf{f}_n(\mathbf{r})=\left\{\begin{array}{ll}
\frac{l_n}{2A_n^+}(\mathbf{r}-\mathbf{p}_+)\quad&\mathrm{if\ \mathbf{r}\in\ T_+}\\
-\frac{l_n}{2A_n^-}(\mathbf{r}-\mathbf{p}_-)\quad&\mathrm{if\ \mathbf{r}\in\ T_-}\\
\mathbf{0}\quad&\mathrm{otherwise}
\end{array}\right.

where l_n is the length of the edge, T_+ and T_- are the two triangles adjacent to the edge, A_n^+ and A_n^- are the areas of the triangles and \mathbf{p}_+ and \mathbf{p}_- are the opposite corners of the triangles.

Sometimes the basis functions are alternatively defined as

\mathbf{f}_n(\mathbf{r})=\left\{\begin{array}{ll}
\frac{1}{2A_n^+}(\mathbf{r}-\mathbf{p}_+)\quad&\mathrm{if\ \mathbf{r}\in\ T_+}\\
-\frac{1}{2A_n^-}(\mathbf{r}-\mathbf{p}_-)\quad&\mathrm{if\ \mathbf{r}\in\ T_-}\\
\mathbf{0}\quad&\mathrm{otherwise}
\end{array}\right.

with the length factor not included.

References

  1. Andriulli, Francasco P.; Cools, Bagci, Olyslager, Buffa, Christiansen, Michelssen (2008). "A Mulitiplicative Calderon Preconditioner for the Electric Field Integral Equation". IEEE Transactions on Antenna and Propogation (IEEE) 56 (8): 2398–2412. Cite uses deprecated parameter |coauthors= (help)
  2. Kirby, Robert C.; Anders Logg, and Andy R . Terrel (2010). "Common and Unusual Finite Elements" (PDF). Retrieved 2 October 2015. Cite uses deprecated parameter |coauthors= (help)
  3. Bahriawati, C.; Carstensen, C. (2005). "Three MATLAB Implementations Of The Lowest-Order Raviart-Thomas MFEM With a Posteriori Error Control" (PDF). Computational Methods in Applied Mathematics 5 (4): 331–361. Retrieved 8 October 2015.
This article is issued from Wikipedia - version of the Wednesday, March 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.