ReaxFF
ReaxFF (for “reactive force field”) is a bond order based force field developed by Adri van Duin, William A. Goddard, III and co- workers at the California Institute of Technology for use e.g. in molecular dynamics simulations. Whereas traditional force fields are unable to model chemical reactions because of the requirement of breaking and forming bonds (a force field's functional form depends on having all bonds defined explicitly), ReaxFF eschews explicit bonds in favor of bond orders, which allows for continuous bond formation/breaking. ReaxFF aims to be as general as possible and has been parameterized and tested for hydrocarbon reactions, alkoxysilane gelation, transition-metal-catalyzed nanotube formation, and high-energy materials.
Recently, ReaxFF is developed to study oxygen interactions with realistic silica surfaces. This version of ReaxFF is based on highly accurate and benchmarking density functional studies. Highly accurate density functional results are achieved by employing Minnesota Functionals.
References
- van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois; Goddard, William A. (2001). "ReaxFF: A Reactive Force Field for Hydrocarbons" (PDF). The Journal of Physical Chemistry A 105 (41): 9396–9409. doi:10.1021/jp004368u.
- Nielson, Kevin D.; van Duin, Adri C. T.; Oxgaard, Jonas; Deng, Wei-Qiao; Goddard, William A. (2005). "Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes" (PDF). The Journal of Physical Chemistry A 109 (3): 493–499. doi:10.1021/jp046244d. PMID 16833370.
- Buehler, M.; Van Duin, A.; Goddard, W. A. (2006). "Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field" (PDF). Physical Review Letters 96 (9). Bibcode:2006PhRvL..96i5505B. doi:10.1103/PhysRevLett.96.095505.
- Strachan, A.; Kober, E. M.; Van Duin, A. C. T.; Oxgaard, J.; Goddard, W. A. (2005). "Thermal decomposition of RDX from reactive molecular dynamics" (PDF). The Journal of Chemical Physics 122 (5): 054502. Bibcode:2005JChPh.122e4502S. doi:10.1063/1.1831277.
- Strachan, A.; Van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; Goddard, W. A. (2003). "Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX" (PDF). Physical Review Letters 91 (9). Bibcode:2003PhRvL..91i8301S. doi:10.1103/PhysRevLett.91.098301.
- Buehler, M.; Tang, H.; Van Duin, A. C. T.; Goddard, W. A. (2007). "Threshold Crack Speed Controls Dynamical Fracture of Silicon Single Crystals" (PDF). Physical Review Letters 99 (16). Bibcode:2007PhRvL..99p5502B. doi:10.1103/PhysRevLett.99.165502.
- Ojwang, J. G. O.; Van Santen, R.; Kramer, G. J.; Van Duin, A. C. T.; Goddard, W. A. (2008). "Modeling the sorption dynamics of NaH using a reactive force field" (PDF). The Journal of Chemical Physics 128 (16): 164714. Bibcode:2008JChPh.128p4714O. doi:10.1063/1.2908737. PMID 18447486.
- Kulkarni, A. D.; Truhlar, D. G.; Goverapet Srinivasan, S.; Van Duin, A. C. T.; Norman, P.; Schwartzentruber, T. E. (2013). "Oxygen Interactions with Silica Surfaces: Coupled Cluster and Density Functional Investigation and the Development of a New ReaxFF Potential". The Journal of Physical Chemistry C 117: 258. doi:10.1021/jp3086649.
- Deetz, J. D.; Faller, R. (2014). "Parallel Optimization of a Reactive Force Field for Polycondensation of Alkoxysilanes". The Journal of Physical Chemistry B 118 (37): 10966. doi:10.1021/jp504138r.