Reeler

A reeler mouse.

A reeler is a mouse mutant, so named because of its characteristic "reeling" gait. This is caused by profound hypoplasia of the mouse's cerebellum, in which the normal cerebellar folia are missing. The mutation is autosomal and recessive.

Cortical neurons are generated normally but are abnormally placed, resulting in disorganization of cortical laminar layers in the CNS. The reason is the lack of Reelin, an extracellular matrix glycoprotein, which during the corticogenesis is secreted mainly by the Cajal-Retzius cells. In the reeler neocortex, cortical plate neurons are aligned in a practically inverted fashion (‘‘outside-in’’). In the ventricular zone of the cortex fewer neurons have been found to have radial glial processes.[1] In the dentate gyrus of hippocampus, no characteristic radial glial scaffold is formed and no compact granule cell layer is established.[2] Therefore, the reeler mouse presents a good model in which to investigate the mechanisms of establishment of the precise neuronal network during development.

Types of reelers

There are two types of the reeler mutation:

In order to unravel the reelin signaling chain, attempts are made to cut the signal downstream of reelin, leaving reelin expression intact but creating the reeler phenotype, sometimes a partial phenotype, thus confirming the role of downstream molecules. The examples include:

Brain slices of wildtype and reeler mice.

Key pathological findings in the Reeler brain structure

Corticogenesis in a wild-type mouse. First neurons to take their place are the subplate neurons (yellow). Next come the cortical plate neurons (black), which migrate past the subplate level. Later-generated neurons drawn to be increasingly more bright.
Corticogenesis in a reeler mutant mouse. Note the so-called "inverted cortex", disorganized cellular layers, oblique angles of radial glia fibers.

Heterozygous Reeler Mouse

Heterozygous reeler mice, also known as HRM, while lacking the apparent phenotype seen in the homozygous reeler, also show some brain abnormalities due to the reelin deficit.

Heterozygous (rl/+) mice express reelin at 50% of wild-type levels and have grossly normal brains but exhibit a progressive loss during aging of a neuronal target of reelin action, Purkinje cells.[15]

The mice have reduced density of parvalbumin-containing interneurons in circumscribed regions of striatum, according to one study.[16]

Studies reveal a 16% deficit in the number of Purkinje cells in 3-month-old (+/rl) and a 24% one in 16-month-old animals: surprisingly this deficit is only present in the (+/rl) males, while the females are spared.

History of research

First mention of reeler mouse mutation dates back to 1951.[17] In the later years, histopathological studies revealed that the reeler cerebellum is dramatically decreased in size and the normal laminar organization found in several brain regions is disrupted (Hamburgh, 1960). In 1995, the RELN gene and reelin protein were discovered at chromosome 7q22 by Tom Curran and colleagues.[18]

See also

References

  1. Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Gotz M. (2003) Reelin signaling directly affects radial glia morphology and biochemical maturation. Development. 130(19):4597-609. PMID 12925587
  2. Weiss, K.H., Johanssen, C., Tielsch, A., Herz, J., Deller, T., Frotscher, M. & Förster, E. (2003) Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLR-deficient mice. J. Comp. Neurol., 460, 56–65. PMID 12687696
  3. Royaux I, Bernier B, Montgomery JC, Flaherty L, Goffinet AM. (1997) Reln(rl-Alb2), an allele of reeler isolated from a chlorambucil screen, is due to an IAP insertion with exon skipping. Genomics. 42(3):479-82. PMID 9205121
  4. Lalonde R, Hayzoun K, Derer M, Mariani J, Strazielle C. (2004) Neurobehavioral evaluation of Reln-rl-orl mutant mice and correlations with cytochrome oxidase activity. Neurosci Res. 49(3):297-305. PMID 15196778
  5. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (June 1999). "Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2". Cell 97 (6): 689–701. doi:10.1016/S0092-8674(00)80782-5. PMID 10380922.
  6. Kuo G, Arnaud L, Kronstad-O'Brien P, Cooper JA (September 2005). "Absence of Fyn and Src causes a reeler-like phenotype". J. Neurosci. 25 (37): 8578–86. doi:10.1523/JNEUROSCI.1656-05.2005. PMID 16162939.
  7. Park TJ, Curran T (December 2008). "Crk and CrkL play essential overlapping roles downstream of Dab1 in the Reelin pathway". J. Neurosci. 28 (50): 13551–62. doi:10.1523/JNEUROSCI.4323-08.2008. PMC 2628718. PMID 19074029.
  8. Molnár Z, Blakemore C (1992) How are thalamocortical axons guided in the reeler mouse? Soc Neurosci Abstr 18:778
  9. Molnár Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18:389–397. PMID 7482804
  10. Molnar Z, Adams R, Goffinet AM, Blakemore C. (1998) The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J Neurosci. 18(15):5746-65. PMID 9671664
  11. Liu, Y., Fujise, N. & Kosaka, T. (1996) Distribution of calretinin immunoreactivity in the mouse dentate gyrus. I. General description. Exp. Brain Res., 108, 389–403.
  12. Drakew, A., Deller, T., Heimrich, B., Gebhardt, C., Del Turco, D., Tielsch, A., Förster, E., Herz, J. & Frotscher, M. (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol., 176, 12–24.
  13. Niu S, Renfro A, Quattrocchi CC, Sheldon M, D'Arcangelo G. (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway.Neuron. 2004 Jan 8;41(1):71-84. PMID 14715136
  14. Matsuzaki H, Minabe Y, Nakamura K, Suzuki K, Iwata Y, Sekine Y, Tsuchiya KJ, Sugihara G, Suda S, Takei N, Nakahara D, Hashimoto K, Nairn AC, Mori N, Sato K (2007). "Disruption of reelin signaling attenuates methamphetamine-induced hyperlocomotion". Eur. J. Neurosci. 25 (11): 3376–84. doi:10.1111/j.1460-9568.2007.05564.x. PMID 17553006.
  15. Hadj-Sahraoui N, Frederic F, Delhaye-Bouchaud N, Mariani J. (1996) Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J Neurogenet. 11(1-2):45-58. PMID 10876649
  16. Ammassari-Teule M, Sgobio C, Biamonte F, Marrone C, Mercuri NB, Keller F (March 2009). "Reelin haploinsufficiency reduces the density of PV+ neurons in circumscribed regions of the striatum and selectively alters striatal-based behaviors". Psychopharmacology (Berl.) 204 (3): 511–21. doi:10.1007/s00213-009-1483-x. PMID 19277610.
  17. Falconer DS (1951) 2 new mutants, trembler and reeler, with neurological actions in the house mouse (mus-musculus l) Journal of Genetics 50 (2): 192-201
  18. D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719-723. PMID 7715726

External links

This article is issued from Wikipedia - version of the Tuesday, March 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.