Relevance vector machine

In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification.[1] The RVM has an identical functional form to the support vector machine, but provides probabilistic classification.

It is actually equivalent to a Gaussian process model with covariance function:

k(\mathbf{x},\mathbf{x'}) = \sum_{j=1}^N \frac{1}{\alpha_j} \varphi(\mathbf{x},\mathbf{x}_j)\varphi(\mathbf{x}',\mathbf{x}_j)

where \varphi is the kernel function (usually Gaussian),\alpha_j's as the variances of the prior on the weight vector w \sim N(0,\alpha^{-1}I) ,and \mathbf{x}_1,\ldots,\mathbf{x}_N are the input vectors of the training set.[2]

Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based post-optimizations). However RVMs use an expectation maximization (EM)-like learning method and are therefore at risk of local minima. This is unlike the standard sequential minimal optimization (SMO)-based algorithms employed by SVMs, which are guaranteed to find a global optimum (of the convex problem).

The relevance vector machine is patented in the United States by Microsoft.[3]

See also

References

  1. Tipping, Michael E. (2001). "Sparse Bayesian Learning and the Relevance Vector Machine". Journal of Machine Learning Research 1: 211244.
  2. Candela, Joaquin Quiñonero (2004). "Sparse Probabilistic Linear Models and the RVM". Learning with Uncertainty - Gaussian Processes and Relevance Vector Machines (PDF) (Ph.D.). Technical University of Denmark. Retrieved April 22, 2016.
  3. US 6633857, Michael E. Tipping, "Relevance vector machine"

Software

External links

This article is issued from Wikipedia - version of the Friday, April 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.