Retene

Retene
Names
IUPAC name
7-Isopropyl-1-methylphenanthrene
Other names
Retene
Identifiers
483-65-8 YesY
ChemSpider 9805 N
EC Number 207-597-9
Jmol interactive 3D Image
PubChem 10222
Properties
C18H18
Molar mass 234.33552
Melting point 98.5 °C (209.3 °F; 371.6 K)
Boiling point 390 °C (734 °F; 663 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Retene, methyl isopropyl phenanthrene or 1-methyl-7-isopropyl phenanthrene, C18H18, is a polycyclic aromatic hydrocarbon present in the coal tar fraction, boiling above 360 °C. It occurs naturally in the tars obtained by the distillation of resinous woods. It crystallizes in large plates, which melt at 98.5 °C and boil at 390 °C. It is readily soluble in warm ether and in hot glacial acetic acid. Sodium and boiling amyl alcohol reduce it to a tetrahydroretene, whilst if it be heated with phosphorus and hydriodic acid to 260 °C, a dodecahydride is formed. Chromic acid oxidizes it to retene quinone, phthalic acid and acetic acid. It forms a picrate which melts at 123-124 °C.

Retene is derived by degradation of specific diterpenoids biologically produced by conifer trees.

The presence of traces of retene in the air is an indicator of forest fires; it is a major product of pyrolysis of conifer trees.[1] It is also present in effluents from wood pulp and paper mills.[2]

Retene, together with cadalene, simonellite and ip-iHMN, is a biomarker of higher plants, which makes it useful for paleobotanic analysis of rock sediments. Ratio of retene/cadalene in sediments can reveal the ratio of the genus Pinaceae in the biosphere.[3]

References

  1. Unsolved Mysteries of Human Health, Community Outreach and Education Program, Oregon State University
  2. J. Koistinen, M. Lehtonena, K. Tukia, M. Soimasuo, M. Lahtiperab and A. Oikari (1998). "IDENTIFICATION OF LIPOPHILIC POLLUTANTS DISCHARGED FROM A FINNISH PULP AND PAPER MILL". Chemosphere 37 (2): 219–235. doi:10.1016/S0045-6535(98)00041-1. PMID 9650265.
  3. Y. Hautevelle, R. Michels, F. Malartre and A. Trouiller (2005). "Vascular plant biomarkers as ancient vegetation proxies and their stratigraphic use for tracing paleoclimatic changes during Jurassic in Western Europe" (abstract). Geophysical Research Abstracts 7: 10201.

Public Domain This article incorporates text from a publication now in the public domain: Chisholm, Hugh, ed. (1911). Encyclopædia Britannica (11th ed.). Cambridge University Press. 

This article is issued from Wikipedia - version of the Monday, November 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.