Retkes convergence criterion
In mathematics, the Retkes convergence criterion, named after Zoltán Retkes, gives necessary and sufficient conditions for convergence of numerical series. Numerous criteria are known for testing convergence. The most famous of them is the so-called Cauchy criterion, the only one that gives necessary and sufficient conditions. Under weak restrictions the Retkes criterion gave a new necessary and sufficient condition for the convergence. The criterion will be formulated in the complex settings:
Assume that and
if
. Then
In the above formula
The equivalence can be proved by using the Hermite–Hadamard inequality.
References
- Zoltán Retkes, "An extension of the Hermite–Hadamard Inequality", Acta Sci. Math. (Szeged), 74 (2008), pages 95–106.
This article is issued from Wikipedia - version of the Wednesday, December 30, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.