Reversible-jump Markov chain Monte Carlo
In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology that allows simulation of the posterior distribution on spaces of varying dimensions.[1] Thus, the simulation is possible even if the number of parameters in the model is not known.
Let
be a model indicator and the parameter space whose number of dimensions
depends on the model
. The model indication need not be finite. The stationary distribution is the joint posterior distribution of
that takes the values
.
The proposal can be constructed with a mapping
of
and
, where
is drawn from a random component
with density
on
. The move to state
can thus be formulated as
The function
must be one to one and differentiable, and have a non-zero support:
so that there exists an inverse function
that is differentiable. Therefore, the and
must be of equal dimension, which is the case if the dimension criterion
is met where is the dimension of
. This is known as dimension matching.
If then the dimensional matching
condition can be reduced to
with
The acceptance probability will be given by
where denotes the absolute value and
is the joint posterior probability
where is the normalising constant.
Software packages
There is an experimental RJ-MCMC tool available for the open source BUGS package.
References
- ↑ Green, P.J. (1995). "Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination". Biometrika 82 (4): 711–732. doi:10.1093/biomet/82.4.711. JSTOR 2337340. MR 1380810.