Riemann–von Mangoldt formula

In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function.

The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies

N(T)=\frac{T}{2\pi}\log{\frac{T}{2\pi}}-\frac{T}{2\pi}+O(\log{T}).

The formula was stated by Riemann in his notable paper On the Number of Primes Less Than a Given Magnitude (1859) and was finally proved by Mangoldt in 1905.

Backlund gives an explicit form of the error for all T greater than 2:

\left\vert{ N(T) - \left({\frac{T}{2\pi}\log{\frac{T}{2\pi}}-\frac{T}{2\pi} } - \frac{7}{8}\right)}\right\vert < 0.137 \log T + 0.443  \log\log T + 4.350 \ .

References

This article is issued from Wikipedia - version of the Tuesday, March 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.