Rodion Kuzmin

Rodion Kuzmin

Rodion Kusmin, circa 1926
Born (1891-10-09)9 October 1891
Riabye village in the Haradok district
Died March 24, 1949(1949-03-24) (aged 57)
Leningrad
Nationality Russian
Fields Mathematics
Institutions Perm State University, Tomsk Polytechnic University, Saint Petersburg State Polytechnical University
Alma mater Saint Petersburg State University nee Petrograd University
Doctoral advisor James Victor Uspensky
Known for Gauss–Kuzmin distribution, number theory and mathematical analysis.

Rodion Osievich Kuzmin (Russian: Родион Осиевич Кузьмин, Nov. 9, 1891, Riabye village in the Haradok district March 24, 1949, Leningrad) was a Russian mathematician, known for his works in number theory and analysis.[1] His name is sometimes transliterated as Kusmin.

Selected results

 x = \frac{1}{k_1 + \frac{1}{k_2 + \cdots}}
is its continued fraction expansion, find a bound for
 \Delta_n(s) = \mathbb{P} \left\{ x_n \leq s \right\} - \log_2(1+s),
where
 x_n = \frac{1}{k_{n+1} + \frac{1}{k_{n+2} + \cdots}} .
Gauss showed that Δn tends to zero as n goes to infinity, however, he was unable to give an explicit bound. Kuzmin showed that
  |\Delta_n(s)| \leq  C e^{- \alpha \sqrt{n}}~,
where C,α > 0 are numerical constants. In 1929, the bound was improved to C 0.7n by Paul Lévy.
2^{\sqrt{2}}=2.6651441426902251886502972498731\ldots
is transcendental. See Gelfond–Schneider theorem for later developments.
 \sum_{n\in I} e^{2\pi if(n)}\ll \lambda^{-1}.

Notes

  1. Venkov, B. A.; Natanson, I. P. "R. O. Kuz’min (1891–1949) (obituary)". Uspekhi Matematicheskikh Nauk 4 (4): 148155.
  2. Kuzmin, R.O. (1928). "On a problem of Gauss". DAN SSSR: 375380.
  3. Kuzmin, R. O. (1930). "On a new class of transcendental numbers". Izvestiya Akademii Nauk SSSR (math.) 7: 585597.

External links

This article is issued from Wikipedia - version of the Thursday, March 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.