SEMA6C
Sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6C | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||
Symbols | SEMA6C ; SEMAY; m-SemaY; m-SemaY2 | ||||||||||||
External IDs | OMIM: 609294 MGI: 1338032 HomoloGene: 7931 GeneCards: SEMA6C Gene | ||||||||||||
| |||||||||||||
RNA expression pattern | |||||||||||||
More reference expression data | |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 10500 | 20360 | |||||||||||
Ensembl | ENSG00000143434 | ENSMUSG00000038777 | |||||||||||
UniProt | Q9H3T2 | Q9WTM3 | |||||||||||
RefSeq (mRNA) | NM_001178061 | NM_001272024 | |||||||||||
RefSeq (protein) | NP_001171532 | NP_001258953 | |||||||||||
Location (UCSC) |
Chr 1: 151.13 – 151.15 Mb |
Chr 3: 95.16 – 95.17 Mb | |||||||||||
PubMed search | |||||||||||||
Semaphorin-6C is a protein that in humans is encoded by the SEMA6C gene.[1][2]
This gene product is a member of the semaphorin family of proteins. Semaphorins represent important molecular signals controlling multiple aspects of the cellular response that follows CNS injury, and thus may play an important role in neural regeneration.[2]
References
- ↑ Qu X, Wei H, Zhai Y, Que H, Chen Q, Tang F, Wu Y, Xing G, Zhu Y, Liu S, Fan M, He F (Sep 2002). "Identification, characterization, and functional study of the two novel human members of the semaphorin gene family". J Biol Chem 277 (38): 35574–85. doi:10.1074/jbc.M206451200. PMID 12110693.
- 1 2 "Entrez Gene: SEMA6C sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6C".
Further reading
- Pasterkamp RJ, Verhaagen J (2001). "Emerging roles for semaphorins in neural regeneration.". Brain Res. Brain Res. Rev. 35 (1): 36–54. doi:10.1016/S0165-0173(00)00050-3. PMID 11245885.
- Gregory SG, Barlow KF, McLay KE, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1.". Nature 441 (7091): 315–21. doi:10.1038/nature04727. PMID 16710414.
- Imabayashi H, Mori T, Gojo S, et al. (2003). "Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis.". Exp. Cell Res. 288 (1): 35–50. doi:10.1016/S0014-4827(03)00130-7. PMID 12878157.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Nagase T, Nakayama M, Nakajima D, et al. (2001). "Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.". DNA Res. 8 (2): 85–95. doi:10.1093/dnares/8.2.85. PMID 11347906.
- Yu W, Andersson B, Worley KC, et al. (1997). "Large-scale concatenation cDNA sequencing.". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction.". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
This article is issued from Wikipedia - version of the Wednesday, September 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.