SETDB1

SET domain, bifurcated 1
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols SETDB1 ; ESET; H3-K9-HMTase4; KG1T; KMT1E; TDRD21
External IDs OMIM: 604396 MGI: 1934229 HomoloGene: 32157 GeneCards: SETDB1 Gene
EC number 2.1.1.43
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 9869 84505
Ensembl ENSG00000143379 ENSMUSG00000015697
UniProt Q15047 D3YYC3
RefSeq (mRNA) NM_001145415 NM_001163641
RefSeq (protein) NP_001138887 NP_001157113
Location (UCSC) Chr 1:
150.93 – 150.96 Mb
Chr 3:
95.32 – 95.36 Mb
PubMed search

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene.[1][2]

Function

The SET domain is a highly conserved, approximately 150-amino acid motif implicated in the modulation of chromatin structure. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.[2]

Model organisms

Model organisms have been used in the study of SETDB1 function. A conditional knockout mouse line, called Setdb1tm1a(EUCOMM)Wtsi[8][9] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[10][11][12]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[6][13] Twenty seven tests were carried out on mutant mice and four significant abnormalities were observed.[6] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and two significant abnormalities were observed. Females had abnormal peripheral blood lymphocytes data and both sexes displayed increased bone strength and mineral content.[6]

Interactions

SETDB1 has been shown to interact with TRIM28.[14]>

References

  1. Harte PJ, Wu W, Carrasquillo MM, Matera AG (June 1999). "Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids". Cytogenet. Cell Genet. 84 (1-2): 83–6. doi:10.1159/000015220. PMID 10343109.
  2. 1 2 "Entrez Gene: SETDB1 SET domain, bifurcated 1".
  3. "Peripheral blood lymphocytes data for Setdb1". Wellcome Trust Sanger Institute.
  4. "Salmonella infection data for Setdb1". Wellcome Trust Sanger Institute.
  5. "Citrobacter infection data for Setdb1". Wellcome Trust Sanger Institute.
  6. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  7. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  8. "International Knockout Mouse Consortium".
  9. "Mouse Genome Informatics".
  10. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  11. Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  12. Collins FS, Rossant J, Wurst W (2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  13. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  14. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (April 2002). "SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins". Genes Dev. 16 (8): 919–32. doi:10.1101/gad.973302. PMC 152359. PMID 11959841.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia - version of the Sunday, August 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.