SPNS2

Spinster homolog 2 (Drosophila) is a protein that in humans is encoded by the SPNS2 gene.[1]

Model organisms

Model organisms have been used in the study of SPNS2 function. A conditional knockout mouse line, called Spns2tm1a(KOMP)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16]

Animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17] Twenty eight tests were carried out on homozygous mutant mice of both sex and nine significant abnormalities were observed, including an absence of pinna reflex, abnormal eye pigmentation and morphology including cataracts, decreased leukocyte cell number, abnormal brainstem auditory evoked potential, increased bone mineral content and a range of atypical peripheral blood lymphocyte parameters.[10] Males additionally displayed decreased circulating glucose and increased circulating bilirubin levels.[10]

The orthologous protein in zebrafish has been shown to transport sphingosine-1-phosphate (S1P) out of cells during vascular development, and human SPNS2 can transport S1P analogues, including the immunomodulating drug FTY720-P.[18][19]

References

  1. "Spinster homolog 2 (Drosophila)". Retrieved 2011-12-04.
  2. "Neurological assessment data for Spns2". Wellcome Trust Sanger Institute.
  3. "Dysmorphology data for Spns2". Wellcome Trust Sanger Institute.
  4. "Eye morphology data for Spns2". Wellcome Trust Sanger Institute.
  5. "Clinical chemistry data for Spns2". Wellcome Trust Sanger Institute.
  6. "Haematology data for Spns2". Wellcome Trust Sanger Institute.
  7. "Peripheral blood lymphocytes data for Spns2". Wellcome Trust Sanger Institute.
  8. "Salmonella infection data for Spns2". Wellcome Trust Sanger Institute.
  9. "Citrobacter infection data for Spns2". Wellcome Trust Sanger Institute.
  10. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  11. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. "International Knockout Mouse Consortium".
  13. "Mouse Genome Informatics".
  14. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  15. Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  16. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  17. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  18. Kawahara, A.; Nishi, T.; Hisano, Y.; Fukui, H.; Yamaguchi, A.; Mochizuki, N. (2009). "The Sphingolipid Transporter Spns2 Functions in Migration of Zebrafish Myocardial Precursors". Science 323 (5913): 524–527. doi:10.1126/science.1167449. PMID 19074308.
  19. Hisano, Y.; Kobayashi, N.; Kawahara, A.; Yamaguchi, A.; Nishi, T. (2010). "The Sphingosine 1-Phosphate Transporter, SPNS2, Functions as a Transporter of the Phosphorylated Form of the Immunomodulating Agent FTY720". Journal of Biological Chemistry 286 (3): 1758–1766. doi:10.1074/jbc.M110.171116. PMC 3023470. PMID 21084291.


This article is issued from Wikipedia - version of the Friday, August 28, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.