Sample-continuous process

In mathematics, a sample-continuous process is a stochastic process whose sample paths are almost surely continuous functions.

Definition

Let (Ω, Σ, P) be a probability space. Let X : I × Ω  S be a stochastic process, where the index set I and state space S are both topological spaces. Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I  S is continuous as a function of topological spaces for P-almost all ω in Ω.

In many examples, the index set I is an interval of time, [0, T] or [0, +), and the state space S is the real line or n-dimensional Euclidean space Rn.

Examples

\begin{cases} X_{t} \sim \mathrm{Unif} (\{X_{t-1} - 1, X_{t-1} + 1\}), & t \mbox{ an integer;} \\ X_{t} = X_{\lfloor t \rfloor}, & t \mbox{ not an integer;} \end{cases}
is not sample-continuous. In fact, it is surely discontinuous.

Properties

See also

References

This article is issued from Wikipedia - version of the Thursday, July 24, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.