Schreier refinement theorem

In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one.

The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma.

Example

Consider \mathbb{Z}/(2) \times S_3, where S_3 is the symmetric group of degree 3. There are subnormal series

\{[0]\} \times \{\operatorname{id}\} \; \triangleleft \; \mathbb{Z}/(2) \times \{\operatorname{id}\} \; \triangleleft \; \mathbb{Z}/(2) \times S_3,
\{[0]\} \times \{\operatorname{id}\} \; \triangleleft \; \{[0]\} \times S_3 \; \triangleleft \; \mathbb{Z}/(2) \times S_3.

S_3 contains the normal subgroup A_3. Hence these have refinements

\{[0]\} \times \{\operatorname{id}\} \; \triangleleft \; \mathbb{Z}/(2) \times \{\operatorname{id}\} \; \triangleleft \; \mathbb{Z}/(2) \times A_3 \; \triangleleft \; \mathbb{Z}/(2) \times S_3

with factor groups isomorphic to (\mathbb{Z}/(2), A_3, \mathbb{Z}/(2)) and

\{[0]\} \times \{\operatorname{id}\} \; \triangleleft \; \{[0]\} \times A_3 \; \triangleleft \; \{[0]\} \times S_3 \; \triangleleft \; \mathbb{Z}/(2) \times S_3

with factor groups isomorphic to (A_3, \mathbb{Z}/(2), \mathbb{Z}/(2)).

References

This article is issued from Wikipedia - version of the Monday, December 28, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.