Signalizer functor
In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functor comes from a subgroup. The idea is to try to construct a -subgroup of a finite group
, which has a good chance of being normal in
, by taking as generators certain
-subgroups of the centralizers of nonidentity elements in one or several given noncyclic elementary abelian
-subgroups of
The technique has origins in the Feit–Thompson theorem, and was subsequently developed by many people including Gorenstein (1969) who defined signalizer functors, Glauberman (1976) who proved the Solvable Signalizer Functor Theorem for solvable groups, and McBride (1982a, 1982b) who proved it for all groups. This theorem is needed to prove the so-called "dichotomy" stating that a given nonabelian finite simple group either has local characteristic two, or is of component type. It thus plays a major role in the classification of finite simple groups.
Definition
Let A be a noncyclic elementary abelian p-subgroup of the finite group G. An A-signalizer functor on G or simply a signalizer functor when A and G are clear is a mapping θ from the set of nonidentity elements of A to the set of A-invariant p′-subgroups of G satisfying the following properties:
- For every nonidentity
, the group
is contained in
- For every nonidentity
, we have
The second condition above is called the balance condition. If the subgroups are all solvable, then the signalizer functor
itself is said to be solvable.
Solvable signalizer functor theorem
Given certain additional, relatively mild, assumptions allow one to prove that the subgroup
of
generated by the subgroups
is in fact a
-subgroup. The Solvable Signalizer Functor Theorem proved by Glauberman and mentioned above says that this will be the case if
is solvable and
has at least three generators. The theorem also states that under these assumptions,
itself will be solvable.
Several earlier versions of the theorem were proven: Gorenstein (1969) proved this under the stronger assumption that had rank at least 5. Goldschmidt (1972a, 1972b) proved this under the assumption that
had rank at least 4 or was a 2-group of rank at least 3. Bender (1975) gave a simple proof for 2-groups using the ZJ theorem, and a proof in a similar spirit has been given for all primes by Flavell (2007). Glauberman (1976) gave the definitive result for solvable signalizer functors. Using the classification of finite simple groups, McBride (1982a, 1982b) showed that
is a
-group without the assumption that
is solvable.
Completeness
The terminology of completeness is often used in discussions of signalizer functors. Let be a signalizer functor as above, and consider the set И of all
-invariant
-subgroups
of
satisfying the following condition:
for all nonidentity
For example, the subgroups belong to И by the balance condition. The signalizer functor
is said to be complete if И has a unique maximal element when ordered by containment. In this case, the unique maximal element can be shown to coincide with
above, and
is called the completion of
. If
is complete, and
turns out to be solvable, then
is said to be solvably complete.
Thus, the Solvable Signalizer Functor Theorem can be rephrased by saying that if has at least three generators, then every solvable
-signalizer functor on
is solvably complete.
Examples of signalizer functors
The easiest way to obtain a signalizer functor is to start with an -invariant
-subgroup
of
and define
for all nonidentity
In practice, however, one begins with
and uses it to construct the
-invariant
-group.
The simplest signalizer functor used in practice is this:
A few words of caution are needed here. First, note that as defined above is indeed an
-invariant
-subgroup of
because
is abelian. However, some additional assumptions are needed to show that this
satisfies the balance condition. One sufficient criterion is that for each nonidentity
the group
is solvable (or
-solvable or even
-constrained). Verifying the balance condition for this
under this assumption requires a famous lemma, known as Thompson's
-lemma. (Note, this lemma is also called Thompson's
-lemma, but the
in this use must not be confused with the
appearing in the definition of a signalizer functor!)
Coprime action
To obtain a better understanding of signalizer functors, it is essential to know the following general fact about finite groups:
- Let
be an abelian noncyclic group acting on the finite group
Assume that the orders of
and
are relatively prime. Then
To prove this fact, one uses the Schur–Zassenhaus theorem to show that for each prime dividing the order of
the group
has an
-invariant Sylow
-subgroup. This reduces to the case where
is a
-group. Then an argument by induction on the order of
reduces the statement further to the case where
is elementary abelian with
acting irreducibly. This forces the group
to be cyclic, and the result follows. See either of the books Aschbacher (2000) or Kurzweil & Stellmacher (2004) for details.
This is used in both the proof and applications of the Solvable Signalizer Functor Theorem. To begin, notice that it quickly implies the claim that if is complete, then its completion is the group
defined above.
Normal completion
The completion of a signalizer functor has a "good chance" of being normal in according to the top of the article. Here, the coprime action fact will be used to motivate this claim. Let
be a complete
-signalizer functor on
Let be a noncyclic subgroup of
Then the coprime action fact together with the balance condition imply that
.
To see this, observe that because is B-invariant, we have
The equality above uses the coprime action fact, and the containment uses the balance condition. Now, it is often the case that satisfies an "equivariance" condition, namely that for each
and nonidentity
The superscript denotes conjugation by For example, the mapping
(which is often a signalizer functor!) satisfies this condition. If
satisfies equivariance, then the normalizer of
will normalize
It follows that if
is generated by the normalizers of the noncyclic subgroups of
then the completion of
(i.e. W) is normal in
References
- Aschbacher, Michael (2000), Finite Group Theory, Cambridge University Press, ISBN 978-0-521-78675-1
- Bender, Helmut (1975), "Goldschmidt's 2-signalizer functor theorem", Israel Journal of Mathematics 22 (3): 208–213, doi:10.1007/BF02761590, ISSN 0021-2172, MR 0390056
- Flavell, Paul (2007), A new proof of the Solvable Signalizer Functor Theorem (PDF)
- Goldschmidt, David M. (1972a), "Solvable signalizer functors on finite groups", Journal of Algebra 21: 137–148, doi:10.1016/0021-8693(72)90040-3, ISSN 0021-8693, MR 0297861
- Goldschmidt, David M. (1972b), "2-signalizer functors on finite groups", Journal of Algebra 21: 321–340, doi:10.1016/0021-8693(72)90027-0, ISSN 0021-8693, MR 0323904
- Glauberman, George (1976), "On solvable signalizer functors in finite groups", Proceedings of the London Mathematical Society. Third Series 33 (1): 1–27, doi:10.1112/plms/s3-33.1.1, ISSN 0024-6115, MR 0417284
- Gorenstein, D. (1969), "On the centralizers of involutions in finite groups", Journal of Algebra 11: 243–277, doi:10.1016/0021-8693(69)90056-8, ISSN 0021-8693, MR 0240188
- Kurzweil, Hans; Stellmacher, Bernd (2004), The theory of finite groups, Universitext, Berlin, New York: Springer-Verlag, doi:10.1007/b97433, ISBN 978-0-387-40510-0, MR 2014408
- McBride, Patrick Paschal (1982a), "Near solvable signalizer functors on finite groups", Journal of Algebra 78 (1): 181–214, doi:10.1016/0021-8693(82)90107-7, ISSN 0021-8693, MR 677717
- McBride, Patrick Paschal (1982b), "Nonsolvable signalizer functors on finite groups", Journal of Algebra 78 (1): 215–238, doi:10.1016/0021-8693(82)90108-9, ISSN 0021-8693