Simply connected at infinity
In topology, a branch of mathematics, a topological space X is said to be simply connected at infinity if for all compact subsets C of X, there is a compact set D in X containing C so that the induced map
is trivial. Intuitively, this is the property that loops far away from a small subspace of X can be collapsed, no matter how bad the small subspace is.
The Whitehead manifold is an example of a 3-manifold that is contractible but not simply connected at infinity. Since this property is invariant under homeomorphism, this proves that the Whitehead manifold is not homeomorphic to R3.
However, it is a theorem of John R. Stallings[1] that for , a contractible n-manifold is homeomorphic to Rn precisely when it is simply connected at infinity.
References
- ↑ "Theory : Chapter 10" (PDF). Math.rutgers.edu. Retrieved 2015-03-08.
This article is issued from Wikipedia - version of the Sunday, March 08, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.