Social navigation
Social navigation is a form of social computing introduced by Dourish and Chalmers in 1994. They defined it as when "movement from one item to another is provoked as an artefact of the activity of another or a group of others".[1] According to later research in 2002, "social navigation exploits the knowledge and experience of peer users of information resources" to guide users in the information space.[2] With all of the digital information available both on the World Wide Web and from other sources, it is becoming increasingly difficult to navigate and search efficiently. Studying others' navigational trails and understanding their behavior can help improve one's own search strategy by helping them to make more informed decisions based on the actions of others.[3] "The idea of social navigation is to aid users to navigate information spaces through making the collective, aggregated, or individual actions of others visible and useful as a basis for making decisions on where to go next and what to choose."[4]
Prior to advancement of Web 2.0 and the Social Web, the World Wide Web had been a solitary space where users did not really have knowledge of where anyone else was browsing and navigating at the same time or different time. Social navigation can help to give users a sense of social presence.[4] The scope of research on social navigation has been increasing especially as information visualization improves. Displaying social information in virtual spaces allows the modeling of user behavior to make digital systems feel more social and less solitary.[2]
Supporting theories and techniques
The concept of social navigation is supported by several theories. Information foraging theory studies human behavior when they are seeking, gathering, sharing and consuming information.[5] Information foraging theory applies optimal foraging theory (OFT) to human behavior when they navigate to information.[6] It explains how people get benefit from other people based on history- rich digital objects which explains the idea of used items or paths. For examples, a used book that has notes, highlights and underlines is different from a new book, and footprints where people follow others’ footprints to get the right direction. History- rich digital objects help people to find the target faster and more efficient.[7]
Information foraging, also, is an alternative to food foraging and ant colony optimization[6] which states that information human-hunters follow others’ paths to reach their target in an optimal time. The optimal information has to maximize the value of the information that is gained per unit cost (like time or effort).[5] This theory supports collaborative activities.[8] It is a guide for designers to build good interfaces where users can get benefit from others research.[7]
The weaknesses of this theory are when people trace information in a wrong direction, there’s no way to re-direct them unless they figure it out,[7] and optimization is not always the case on human behavior; humans make decision when they are satisfied with the result.[8]
Information patch model studies time that is spent in navigation in filtered information and clustered information and works to optimize the overall information in an optimal time.[5][8]
Information scent model determines value of information using the most useful cues which have been done by other users.[5][8]
Information diet model (prey selection) explains how people select the target information based on others selection which leads to optimal satisfying information.[5][8]
The mere design of webpages also plays an important role in how a user interacts with the internet in a social manner. There is a correlation between accessibility and popularity.[9] The more functional a website is, the more traffic it will receive.[9] A more frequented web service will naturally be a more social experience. There are numerous factors that contribute to accessibility such as location of the page on a website, properties of a page, number of hyperlinks on a page, and possible ways of arriving at the page.[10][11] Every person has a different approach to surfing the web. Internet navigation is defined as "The creation and interpretation of an internal (mental) model, and its component activities are browsing, modelling, interpretation and formulation of browsing strategy."[10] There is a theory that if a user calibrates their browsing strategy to reflect their interests, more interesting pages will be found.[10] Uninformed chugging through hyperlinks can be misleading and result in a higher proportion of unwanted sites being accessed.[12] To improve surfing, users should formulate a strategy, browse content, and then adjust based on how they judge the quality of the session.[10] Bookmarking is way to ensure you return to sites that appeal to your interests.[12] This is the building block of social navigation as it creates a hyperlink that is saved for future browsing. When a population bookmarks the same page visits it frequently, it forms a sense of community. Recently, live updating of other present users adds another dimension to the social aspect of web browsing.[12] For example, Facebook has a small green circle next to specific names in the chat window indicating those users are also on the site. How we communicate with others using web mediums is a foundation of social navigation.
Collaborative filtering is another technique that is prevalent and utilized in social navigation. It suggests that if users were presented search results based on traffic by others who share similar social interests, it would result in a more rewarding and efficient experience.[13] For example, Amazon.com has a "Customers Who Bought This Item Also Bought" feature that presents shoppers with other products bought by users that are similar to the user. This streamlines the flow of web browsing and gets people in touch with more relevant pages.[13]
Traces of users' activities
As users navigate through online communities they leave traces of their activities, both intentional and unintentional. Intentional traces include posts, responses to other users’ posts, number of friends, uploaded media, and other activities where users intentionally share information. Unintentional traces include browsing history, times spent on particular pages, bounce rates and other activities where users’ actions are automatically logged by web servers into server logs.
Björneborn categorizes online community users as “trace leavers” (i.e. users who leave actionable items) and "trace finders" (i.e. users who follow traces left by trace leavers). These participatory activities can guide other users’ information seeking behavior and influences features of social search and social navigation.[14] Combining trace-leaving activities of social browsing with the concept of social search relies on recording and reusing focused search activities of like-minded searchers to produce search results that are better suited to the needs of a particular online community, as demonstrated by Freyne et al.[15]
Websites such as Amazon.com use traces of users' activities such as history of purchases or product reviews to generate recommendations for other users (e.g. "Customers Who Bought This Item Also Bought...").[16] Online platforms for collaborative software development such as GitHub rely on activity traces (number of repositories, history of activity across projects, commits and personal profiles to determine its users' reputations in the community.[17]
User activity traces can be used to model users’ behavioral patterns and trends in order to determine online communities’ health (whether a community would flourish or diminish).[18] Such models can also be used to predict propagation and future popularity of content,[19] or predict voting results before voting even occurs.[20] Furthermore, activity and traffic patterns can be used for evaluating performance of existing systems, improving site usability, as well as site architecture and infrastructure.[21]
Implementation examples
Educational systems
Various applications of social navigation have been studied in educational systems. One such example is Knowledge Sea II. Compared to traditional approaches (so-called Closed Corpus), this system is able to gather online information (named Open Corpus) and feedback from different sources. Group traffic is used as feedback to indicate social navigation information such as "the most important parts of the textbooks". After a classroom study, Knowledge Sea II system shows better performance in visualization of content relevance of the textbook and satisfaction of student users.[22]
Mertens and his colleagues optimize an existed system: virtPresenter, with addition of hypermedia navigation concept. bookmarks, footprints and structural elements are integrated to help users to access lecture recordings and support social navigation for the future users as well. The new version of virtPresenter shows better performance in social navigation function such as: visualization, week-based filtering and exchangeable bookmarks.[23]
Farzan and Brusilovsky introduce the AnnotatEd system, which combines functions of web annotation and adaptive navigation support to synergize social navigation application in web-based education. With implementations of web annotation and social navigation support (SNS), this AnnotatEd system could integrate into Knowledge Sea II or ASSIST-ACM. AnnotatEd integrated Knowledge Sea II has been evaluated for six semesters in School of Information Systems University of Pittsburgh, which shows the significantly higher positive user attitude towards this new system because of its social navigation integration.[24]
Urban mobile information system
In Marcus Foth’s (2008) book, a system called CityFlocks is introduced to show social navigation implementation in urban mobile information system.[25] This implementation is described in more details by Bilandzic et al. (2008)[26] earlier. In the article, to solve so-called “socially blind” problem even based on booming of mobile phone user, CityFlocks is designed enabling web annotations combined with coordinates upon physical targets in the city. Also, this social navigation implementation could be applied in direct or indirect way. To achieve this, focus groups are chose to collect requirements and problems in social navigation. Accordingly, CityFlocks is designed and generated using appropriate techniques such as Google maps and information retrieval. User tests of CityFlocks indicated that an indirect approach is more acceptable than a direct one, because of the concerning of talking to a complete stranger.
Prototypes
Two prototypes of social navigation system have been introduced: “Juggler” and “Vortex”. The “Juggler” system combines MOO, a textual virtual environment, and a Web client. The “Vortex” system uses an alternative way: simplified desktop, to present URLs.[27]
History-enriched implementation
History-enriched implementation of social navigation is based on the making the traces of behavior of latent users visible to future users. The implementation of such idea can be traced back to the first system introduced by Wexelblat and Maes who introduced an information spaced enriched with various social navigation mechanisms: document map, navigation paths, and documents' annotations and signposts.[28] They used six properties in Footprints system, Proxemic versus Distemic, Active versus Passive, Rate of Change, Degree of Permeation, Personal versus social, and Kind of Information. More examples of history-rich information spaces has been implemented in different context such as educational domain,[29] location-based networking, and food recipes.
Social Navigation Network (SoNavNet), a location-based social networks (LSBN) application, devised by Karimi and his team, is aimed at sharing navigation experience. Other than simply showing the shortest time or distance like Google Maps, users’ specific experience and recommendation are underlined. With both geo-position and message function, SoNavNet allows users to send request to their friends while present their current location and Points of interest(POI), from which, they will acquire route and venue information oriented to their needs.[30]
Svensson and his team created a recipe recommendation system, European Food On-Line(EFOL), which equips with both direct (chatting with other user) and indirect navigation (collaborative filtering) approaches. Social Navigator was implemented as a Java servlet for modelling users' behavior and net-based communication usages.[31]
Embedded visualization implementation
Social navigation implementation plays a significant role in guiding users to forage information they need. Visualization is an indispensable part when showing information in great detail. Willett and his team designed Scented Widgets, which improves navigation in both popular and undiscovered realms with embedded visualization. They implemented scent metrics with a standard interface widget and used visual encoding for data. Hue, Saturation, Opacity, Text, Icon, Bar Chart and Line Chart are scent encodings to highlight various information, which can display different types of data at the same time. They used Java Swing and the platform’s pluggable look and feel functionality to create and change widgets at runtime. In order to design a user-friendly interface, they followed Scent Encoding, Layout, and Composition guidelines which gave clear instruction in how to use scent widget better showing multiple information.[32]
Recent trends and implementation in products
As popularity of social networks and social web grows, great deal of data can be collected through the footprints of users left behind as they interact within different social computing systems. This growth has led into more novel and diverse implementation of social navigation support, including in Education, Media, News, and Tour Guide Systems. Implementation of Social Navigation in shared 3D environment works in the similar way, as allows users to see trail and information of others who used to be in the same place before in the virtual world. This architecture has been evaluated through a prototype system, proving its performance and usability.[33] Bosch improved real navigation systems for driving, used social navigation to reduce driving time on the road. The model even considered altruism and CO2 emission in a novel way, which has been evaluated in Bay area, achieving improvement of 10%.[34]
References
- ↑ Dourish, P. and Chalmers, M. (1004). Running out of space: models of information navigation. Proceedings of HCI'94, Glasgow, August 1994.
- 1 2 Chen, C., Cribbin, T., Kuljis, J., Macredie, R., 2002. Footprints of information foragers: behaviour semantics of visual exploration. International Journal of Human-Computer Studies 57, 139–163.
- ↑ Dieberger, A. et al., Social Navigation: Techniques for Building more Usable Systems. Interactions (Nov. - Dec 2000), 37..45.
- 1 2 Svensson, Hook, Coster - Designing and Evaluating Kalas: A Social Navigation System for Food Recipes
- 1 2 3 4 5 Pirolli, P., & Card, S. (1999). Information foraging. Psychological review,106(4), 643.
- 1 2 Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behavior. Nature, 406(6791), 39-42
- 1 2 3 Wexelblat, A., & Maes, P. (1999, May). Footprints: history-rich tools for information foraging. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 270-277). ACM.
- 1 2 3 4 5 Pirolli, P., & Card, S. (1995, May). Information foraging in information access environments. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 51-58). ACM Press/Addison-Wesley Publishing Co.
- 1 2 Yen, B. P.-C. (2077). The design and evaluation of accessibility on web navigation. Decision Support Systems(42), 2219-2235.
- 1 2 3 4 Spence, R. (1999). A framework for navigation. Int. J. Human-Computer Studies(51), 919-945.
- ↑ Campbell, C. S., Maglio, P. P. (1999). Facilitating navigation in information spaces: Road-signs on the World Wide Web. Int. J. Human-Computer Studies(50), 309-327.
- 1 2 3 Dieberger, A. (1997). Supporting social navigation on the World Wide Web. Int. J. Human-Computer Studies(46), 805-825.
- 1 2 Beydoun, G., Manasseh, G., Kultchitsky, R. (2007). Evolving semantic web with social navigation. Expert Systems with Applications(32), 265-276.
- ↑ Björneborn, Lennart (2011). "Behavioural traces and indirect user-to-user mediation in the participatory library" (PDF). Proceedings of ISSOME 2011, the International Conference on Information Science and Social Media: 151–166.
- ↑ Freyne, Jill; Farzan, Rosta; Brusilovsky, Peter; Smyth, Barry; Coyle, Maurice (2007). "Collecting Community Wisdom: Integrating Social Search & Social Navigation" (PDF). Proceedings of International Conference on Intelligent User Interfaces: 52–61. doi:10.1145/1216295.1216312. ISBN 1-59593-481-2.
- ↑ United States of America Granted US6064980 A, Jennifer A. Jacobi, Eric A. Benson & Eric A. Benson, "System and methods for collaborative recommendations", published 2000-05-16, issued 2000-05-16, assigned to Amazon.Com, Inc.
- ↑ Marlow, Jennifer; Dabbish, Laura; Herbsleb, Jim (2013). "Impression formation in online peer production: activity traces and personal profiles in github". Proceedings of the 2013 conference on Computer supported cooperative work: 117–128. doi:10.1145/2441776.2441792. ISBN 978-1-4503-1331-5.
- ↑ Angeletou, S; Rowe, M; Alani, H (2011). "Modelling and Analysis of User Behaviour in Online Communities". Proceedings of International Semantic Web Conferences: 35–50.
- ↑ Hogg, Tad; Szabo, Gabor (2009). "Diversity of User Activity and Content Quality in Online Communities". Proceeding of the 3rd Int'l AAAI Conference on Weblogs and Social Media (ICWSM09): 58–65.
- ↑ Tumasjan, A; Sprenger, T.O.; Sandner, P.G.; Welpe, I.M. (2010). "Predicting elections with twitter: what 140 characters reveal about political sentiment". Proceedings of the Fourth International AAAI Conference on Weblogs and Social.
- ↑ Benevenuto, Fabrício; Rodrigues, Tiago; Cha, Meeyoung; Almeida, Virgílio (2009). "Characterizing User Behavior in Online Social Networks". Proceedings of the 12th international conference on Intelligent user interfaces: 52–61. doi:10.1145/1644893.1644900. ISBN 978-1-60558-771-4.
- ↑ Brusilovsky, Peter; Chavan, Girish; Farzan, Rosta (2004). "Social adaptive navigation support for open corpus electronic textbooks". Adaptive Hypermedia and Adaptive Web-Based Systems. Springer-Verlag Berlin Heidelberg. pp. 805–825. ISBN 978-3-540-27780-4.
- ↑ Mertens, Robert; Farzan, Rosta; Brusilovsky, Peter (2006). "Social navigation in web lectures". Proceedings of the seventeenth conference on Hypertext and hypermedia: 41–44. doi:10.1145/1149941.1149950. ISBN 1-59593-417-0. Retrieved 11 April 2016.
- ↑ Farzan, Rosta; Brusilovsky, Peter (2008). "AnnotatEd: A social navigation and annotation service for web-based educational resources". New Review of Hypermedia and Multimedia 14 (1): 3–32. doi:10.1080/13614560802357172. ISSN 1361-4568. Retrieved 11 April 2016.
- ↑ Foth, Marcus (2008). Handbook of Research on Urban Informatics: The Practice and Promise of the Real-Time City: The Practice and Promise of the Real-Time City. IGI Global. pp. 188–189. ISBN 9781605661537.
- ↑ Bilandzic, Mark; Foth, Marcus; De Luca, Alexander (2008). "CityFlocks: designing social navigation for urban mobile information systems" (PDF). Proceedings of the 7th ACM conference on Designing interactive systems: 174–183. doi:10.1145/1394445.1394464. ISBN 978-1-60558-002-9. Retrieved 8 April 2016.
- ↑ Dieberger, Andreas (1997). "Supporting social navigation on the World Wide Web" (PDF). International Journal of Human-Computer Studies 46: 805–825. doi:10.1006/ijhc.1996.0111. ISSN 1071-5819. Retrieved 8 April 2016.
- ↑ Wexelblat, Alan, and Pattie Maes. "Footprints: history-rich tools for information foraging." Proceedings of the SIGCHI conference on Human Factors in Computing Systems. ACM, 1999.
- ↑ Brusilovsky, Peter, et al. "Social navigation for educational digital libraries." Procedia Computer Science 1.2 (2010): 2889-2897.
- ↑ Karimi, Hassan A., et al. "SoNavNet: a framework for social navigation networks." Proceedings of the 2009 International Workshop on Location Based Social Networks. ACM, 2009.
- ↑ Svensson, Martin, et al. "Social navigation of food recipes." Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 2001.
- ↑ Willett, Wesley, Jeffrey Heer, and Maneesh Agrawala. "Scented widgets: Improving navigation cues with embedded visualizations." Visualization and Computer Graphics, IEEE Transactions on 13.6 (2007): 1129-1136.
- ↑ Vosinakis, S.; Papadakis, I., "Virtual Worlds as Information Spaces: Supporting Semantic and Social Navigation in a shared 3D Environment," in Games and Virtual Worlds for Serious Applications (VS-GAMES), 2011 Third International Conference on , vol., no., pp.220-227,4-6 May2011
- ↑ A. van den Bosch, B. van Arem, M. Mahmod and J. Misener, "Reducing time delays on congested road networks using social navigation," Integrated and Sustainable Transportation System (FISTS), 2011 IEEE Forum on, Vienna, 2011, pp. 26-31.