Space syntax

For the syntax of spaces in programming languages, see Whitespace character#Programming languages.
Map of axis lines in Brasília. The colors show the global integration of the different streets, measuring the accessibility of a topological line for the entire system according to the spatial analysis of the space syntax. Created with Mindwalk 1.0

The term space syntax encompasses a set of theories and techniques for the analysis of spatial configurations. It was conceived by Bill Hillier, Julienne Hanson and colleagues at The Bartlett, University College London in the late 1970s to early 1980s as a tool to help urban planners simulate the likely social effects of their designs.

Thesis

The general idea is that spaces can be broken down into components, analyzed as networks of choices, then represented as maps and graphs that describe the relative connectivity and integration of those spaces. It rests on three basic conceptions of space:

The three most popular ways of analysing a street network are Integration, Choice and Depth Distance.

Theoretically, the integration measure shows the cognitive complexity of reaching a street, and is often argued to 'predict' the pedestrian use of a street: the easier it is to reach a street, the more popular it should be. While there is some evidence of this being true, the method is biased towards long, straight streets that intersect with lots of other streets. Such streets, as Oxford Street in London, come out as especially strongly integrated. However, a slightly curvy street of the same length would typically be segmented into individual straight segments, not counted as a single line, which makes curvy streets appear less integrated in the analysis.

Like Integration, Choice analysis can be restricted to limited local radii, for instance 400m, 800m, 1600m. Interpreting Choice analysis is trickier than Integration. Space syntax argues that these values often predict the car traffic flow of streets, but, strictly speaking, Choice analysis can also be thought to represent the number of intersections that need to be crossed to reach a street. However, since flow values are divided (not subtracted) at each intersection, the output shows an exponential distribution. It is considered best to take a log of base two of the final values in order to get a more accurate picture.

Applications

From these components it is thought to be possible to quantify and describe how easily navigable any space is, useful for the design of museums, airports, hospitals, and other settings where wayfinding is a significant issue. Space syntax has also been applied to predict the correlation between spatial layouts and social effects such as crime, traffic flow, and sales per unit area.

History

Space syntax has grown to become a tool used around the world in a variety of research areas and design applications in architecture, urban design, planning, transport and interior design. In general, the analysis uses one of many software programs that allow researchers to analyse graphs of one (or more) of the primary spatial components.

Over the past decade, Space syntax techniques have been used for research in archaeology, information technology, urban and human geography, and anthropology. Since 1997, the Space syntax community has held biennial conferences, and many journal papers have been published on the subject, chiefly in Environment and Planning B.

Criticism

Space syntax's mathematical reliability has recently come under scrutiny because of a number of paradoxes that arise under certain geometric configurations. These paradoxes have been highlighted by Carlo Ratti at the Massachusetts Institute of Technology, but denied in a passionate academic exchange with Bill Hillier and Alan Penn [2004]. There have been moves to return to combine space syntax with more traditional transport engineering models, using intersections as nodes and constructing visibility graphs to link them, by researchers including Bin Jiang, Valerio Cutini and Mike Batty. Recently there has also been research development that combines space syntax with geographic accessibility analysis in GIS, such as the place syntax-models developed by the research group Spatial Analysis and Design at the Royal Institute of Technology in Stockholm, Sweden.

See also

References

External links

This article is issued from Wikipedia - version of the Monday, December 14, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.