Spence's function

"Li2" redirects here. For the molecule with formula Li2, see dilithium.
The dilogarithm along the real axis

In mathematics, Spence's function, or dilogarithm, denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:


\operatorname{Li}_2(z) = -\int_0^z{\ln(1-u) \over u}\, \mathrm{d}u \text{, }z \in\mathbb{C} \setminus [1,\infty)

and its reflection. For |z|<1 an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):


\operatorname{Li}_2(z) = \sum_{k=1}^\infty {z^k \over k^2}.

Alternatively, the dilogarithm function is sometimes defined as


\int_{1}^{v} \frac{ \ln t }{ 1 -t } \mathrm{d}t = \operatorname{Li}_2(1-v).

In hyperbolic geometry the dilogarithm \operatorname{Li}_2(z)
occurs as the hyperbolic volume of an ideal simplex whose ideal vertices have cross ratio z. Lobachevsky's function and Clausen's function are closely related functions.

William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[1] He was at school with John Galt,[2] who later wrote a biographical essay on Spence.

Identities

\operatorname{Li}_2(z)+\operatorname{Li}_2(-z)=\frac{1}{2}\operatorname{Li}_2(z^2)[3]
\operatorname{Li}_2(1-z)+\operatorname{Li}_2\left(1-\frac{1}{z}\right)=-\frac{\ln^2z}{2}[4]
\operatorname{Li}_2(z)+\operatorname{Li}_2(1-z)=\frac{{\pi}^2}{6}-\ln z \cdot\ln(1-z) [3]
\operatorname{Li}_2(-z)-\operatorname{Li}_2(1-z)+\frac{1}{2}\operatorname{Li}_2(1-z^2)=-\frac  {{\pi}^2}{12}-\ln z \cdot \ln(z+1)[4]
\operatorname{Li}_2(z) +\operatorname{Li}_2(\frac{1}{z}) = - \frac{\pi^2}{6} - \frac{1}{2}\ln^2(-z)[3]

Particular value identities

\operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}-\frac{\ln^23}{6}[4]
\operatorname{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\ln2\cdot \ln3-\frac{\ln^22}{2}-\frac{\ln^23}{3}  [4]
\operatorname{Li}_2\left(\frac{1}{4}\right)+\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}+2\ln2\ln3-2\ln^22-\frac{2}{3}\ln^23 [4]
\operatorname{Li}_2\left(-\frac{1}{3}\right)-\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\frac{1}{6}\ln^23 [4]
\operatorname{Li}_2\left(-\frac{1}{8}\right)+\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{1}{2}\ln^2{\frac{9}{8}}[4]
36\operatorname{Li}_2\left(\frac{1}{2}\right)-36\operatorname{Li}_2\left(\frac{1}{4}\right)-12\operatorname{Li}_2\left(\frac{1}{8}\right)+6\operatorname{Li}_2\left(\frac{1}{64}\right)={\pi}^2

Special values

\operatorname{Li}_2(-1)=-\frac{{\pi}^2}{12}
\operatorname{Li}_2(0)=0
\operatorname{Li}_2\left(\frac{1}{2}\right)=\frac{{\pi}^2}{12}-\frac{\ln^2 2}{2}
\operatorname{Li}_2(1)=\frac{{\pi}^2}{6}
\operatorname{Li}_2(2)=\frac{{\pi}^2}{4}-i\pi\ln2
\operatorname{Li}_2\left(-\frac{\sqrt5-1}{2}\right)=-\frac{{\pi}^2}{15}+\frac{1}{2}\ln^2 \frac{\sqrt5-1}{2}
=-\frac{{\pi}^2}{15}+\frac{1}{2}\operatorname{arcsch}^2 2
\operatorname{Li}_2\left(-\frac{\sqrt5+1}{2}\right)=-\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5+1}{2}
=-\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2
\operatorname{Li}_2\left(\frac{3-\sqrt5}{2}\right)=\frac{{\pi}^2}{15}-\ln^2 \frac{\sqrt5-1}{2}
=\frac{{\pi}^2}{15}-\operatorname{arcsch}^2 2
\operatorname{Li}_2\left(\frac{\sqrt5-1}{2}\right)=\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5-1}{2}
=\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2

In Particle Physics

Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:


\operatorname{\Phi}(x) = -\int_0^x \frac{\ln|1-u|}{u} \, \mathrm{d}u = 
\begin{cases}
\operatorname{Li}_2(x), & x \leq 1; \\ \frac{\pi^2}{3} - \frac{1}{2} \ln^2(x) - \operatorname{Li}_2(\frac{1}{x}), & x > 1.
\end{cases}

Notes

References

Further reading

External links

This article is issued from Wikipedia - version of the Sunday, December 20, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.