Spin spherical harmonics

Not to be confused with Spin-weighted spherical harmonics.

In quantum mechanics, spin spherical harmonics Yl, s, j, m are spinors eigenstates of the total angular momentum operator squared:


\begin{align}
  \mathbf j^2 Y_{l, s, j, m} &= j (j + 1) Y_{l, s, j, m} \\
  \mathrm j_{\mathrm z} Y_{l, s, j, m} &= m Y_{l, s, j, m}
\end{align}

where j = l + s. They are the natural spinorial analog of vector spherical harmonics.

For spin-1/2 systems, they are given in matrix form by[1]


  Y_{j \pm \frac{1}{2}, \frac{1}{2}, j, m}
    = \frac{1}{\sqrt{2 \bigl(j \pm \frac{1}{2}\bigr) + 1}}
      \begin{pmatrix}
        \mp \sqrt{j \pm \frac{1}{2} \mp m + \frac{1}{2}} Y_{j \pm \frac{1}{2}}^{m - \frac{1}{2}} \\
        \sqrt{j \pm \frac{1}{2} \pm m + \frac{1}{2}} Y_{j \pm \frac{1}{2}}^{m + \frac{1}{2}}
     \end{pmatrix}

Notes

  1. Biedenharn, L. C.; Louck, J. D. (1981), Angular momentum in Quantum Physics: Theory and Application, Encyclopedia of Mathematics 8, Reading: Addison-Wesley, p. 283, ISBN 0-201-13507-8

References


This article is issued from Wikipedia - version of the Saturday, April 16, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.