Computational statistics

Statistics algorithms were one of the first uses of modern computers.

Computational statistics, or statistical computing, is the interface between statistics and computer science. It is the area of computational science (or scientific computing) specific to the mathematical science of statistics. This area is also developing rapidly, leading to calls that a broader concept of computing should be taught as part of general statistical education.[1]

The terms 'computational statistics' and 'statistical computing' are often used interchangeably, although Carlo Lauro (a former president of the International Association for Statistical Computing) proposed making a distinction, defining 'statistical computing' as "the application of computer science to statistics", and 'computational statistics' as "aiming at the design of algorithm for implementing statistical methods on computers, including the ones unthinkable before the computer age (e.g. bootstrap, simulation), as well as to cope with analytically intractable problems" [sic].[2]

The term 'Computational statistics' may also be used to refer to computationally intensive statistical methods including resampling methods, Markov chain Monte Carlo methods, local regression, kernel density estimation, artificial neural networks and generalized additive models.

Computational statistics journals

Associations

See also

References

  1. Nolan, D. & Temple Lang, D. (2010). "Computing in the Statistics Curricula", The American Statistician 64 (2), pp.97-107.
  2. Lauro, Carlo (1996), "Computational statistics or statistical computing, is that the question?", Computational Statistics & Data Analysis 23 (1): 191–193, doi:10.1016/0167-9473(96)88920-1

Further reading

Articles

Books

External links

Associations

Journals

This article is issued from Wikipedia - version of the Friday, May 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.