Stress functions
In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces (&/or body forces that could be expressed as potentials) on the boundary are (using index notation) the equilibrium equation:
where  is the stress tensor, and the Beltrami-Michell compatibility equations:
 is the stress tensor, and the Beltrami-Michell compatibility equations:
A general solution of these equations may be expressed in terms the Beltrami stress tensor. Stress functions are derived as special cases of this Beltrami stress tensor which, although less general, sometimes will yield a more tractable method of solution for the elastic equations.
Beltrami stress functions
It can be shown [1] that a complete solution to the equilibrium equations may be written as
Using index notation:
- Engineering notation       
where  is an arbitrary second-rank tensor field that is continuously differentiable at least four times, and is known as the Beltrami stress tensor.[1] Its components are known as Beltrami stress functions.
 is an arbitrary second-rank tensor field that is continuously differentiable at least four times, and is known as the Beltrami stress tensor.[1] Its components are known as Beltrami stress functions.  is the Levi-Civita pseudotensor, with all values equal to zero except those in which the indices are not repeated. For a set of non-repeating indices the component value will be +1 for even permutations of the indices, and -1 for odd permutations. And
 is the Levi-Civita pseudotensor, with all values equal to zero except those in which the indices are not repeated. For a set of non-repeating indices the component value will be +1 for even permutations of the indices, and -1 for odd permutations. And  is the Nabla operator
 is the Nabla operator
Maxwell stress functions
The Maxwell stress functions are defined by assuming that the Beltrami stress tensor  tensor is restricted to be of the form.[2]
 tensor is restricted to be of the form.[2]
The stress tensor which automatically obeys the equilibrium equation may now be written as:[2]
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami–Michell compatibility equations for stress. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions:[3]
These must also yield a stress tensor which obeys the specified boundary conditions.
Airy stress function
The Airy stress function is a special case of the Maxwell stress functions, in which it is assumed that A=B=0 and C is a function of x and y only.[2]  This stress function can therefore be used only for two-dimensional problems.  In the elasticity literature, the stress function  is usually represented by
 is usually represented by  and the stresses are expressed as
 and the stresses are expressed as
Where  and
 and  are values of body forces in relevant direction.
 are values of body forces in relevant direction.
In polar coordinates the expressions are:
Morera stress functions
The Morera stress functions are defined by assuming that the Beltrami stress tensor  tensor is restricted to be of the form [2]
 tensor is restricted to be of the form [2]
The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions:[4]
Prandtl stress function
The Prandtl stress function is a special case of the Morera stress functions, in which it is assumed that A=B=0 and C is a function of x and y only.[4]
Notes
- 1 2 Sadd, Martin H. Elasticity: Theory, Applications, and Numerics. Elsevier Science & Technology Books. p. 363. ISBN 978-0-12-605811-6.
- 1 2 3 4 Sadd, M. H. (2005) Elasticity: Theory, Applications, and Numerics, Elsevier, p. 364
- ↑ Knops (1958) p327
- 1 2 Sadd, M. H. (2005) Elasticity: Theory, Applications, and Numerics, Elsevier, p. 365
References
- Sadd, Martin H. (2005). Elasticity - Theory, applications and numerics. New York: Elsevier Butterworth-Heinemann. ISBN 0-12-605811-3. OCLC 162576656.
- Knops, R. J. (1958). "On the Variation of Poisson's Ratio in the Solution of Elastic Problems". The Quarterly Journal of Mechanics and Applied Mathematics (Oxford University Press) 11 (3): 326–350. doi:10.1093/qjmam/11.3.326.
See also
- Elasticity (physics)
- Elastic modulus
- Infinitesimal strain theory
- Linear elasticity
- Solid mechanics
- Stress (mechanics)




















