Strichartz estimate

In applied mathematics, Strichartz estimates are a family of inequalities for linear dispersive partial differential equations. These inequalities establish size and decay of solutions in mixed norm Lebesgue spaces. They were first noted by R. Strichartz and arose out of contentions to the Fourier restriction problem.[1]

Examples

Consider the linear Schrödinger equation in \mathbb{R}^d with h = m = 1. Then the solution for initial data u_0 is given by e^{it\Delta/2}u_0. Let q and r be real numbers satisfying 2\leq q, r \leq \infty; \frac{2}{q}+\frac{d}{r}=\frac{d}{2}; and (q,r,d)\neq(2,\infty,2).

In this case the homogeneous Strichartz estimates take the form:[2]

\|e^{it\Delta/2} u_0\|_{L^q_tL^r_x}\leq C_{d,q,r} \|u_0\|_2.

Further suppose that \tilde q, \tilde r satisfy the same restrictions as q, r and \tilde q', \tilde r' are their dual exponents, then the dual homogeneous Strichartz estimates take the form:[2]

\left\| \int_\mathbb{R} e^{-is\Delta/2}F(s)\,ds\right\|_{L^2_x}\leq C_{d,\tilde q, \tilde r}\|F\|_{L^{\tilde q'}_tL^{\tilde r'}_x}.

The inhomogeneous Strichartz estimates are:[2]

\left\| \int_{s<t} e^{-i(t-s)\Delta/2}F(s)\,ds\right\|_{L^q_tL^r_x}\leq C_{d, q,  r, \tilde q, \tilde r}\|F\|_{L^{\tilde q'}_tL^{\tilde r'}_x}.

References

  1. R.S. Strichartz (1977), "Restriction of Fourier Transform to Quadratic Surfaces and Decay of Solutions of Wave Equations", Duke Math. J 44: 705–713
  2. 1 2 3 Tao, Terence (2006), Nonlinear dispersive equations: Local and global analysis, CBMS Regional Conference Series in Mathematics 106, ISBN 0-8218-4143-2


This article is issued from Wikipedia - version of the Thursday, September 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.