Sulfene

Sulfene
Names
Other names
Thioformaldehyde-S,S-dioxide
Identifiers
917-73-7 N
ChemSpider 10645700 YesY
Jmol 3D image Interactive graph
PubChem 12244237
Properties
CH
2
SO
2
Molar mass 78.090 g mol−1
Structure
trigonal planar at C and S
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Sulfene is an extremely reactive chemical compound with the formula H2C=SO2. It is the simplest member of the sulfenes, the group of compounds which are S,S-dioxides of thioaldehydes and thioketones, and have the general formula R2C=SO2.[1][2][3]

Preparation

The first general method for preparation of sulfene as an intermediate, reported simultaneously in 1962 by Gilbert Stork[4] and by Günther Optiz,[5] involved removal of hydrogen chloride from methanesulfonyl chloride using triethylamine in the presence of an enamine as trapping agent. The formation of a thietane 1,1-dioxide derivative was taken as evidence for the intermediacy of sulfene. Because of the highly electrophilic character of sulfene, the use of amines presents difficulties, since they can intercept the sulfene to form complexes, which may display reduced activity in trapping reactions compared to sulfene itself. A simple alternative which avoids the use of amines involves desilylation of trimethylsilylmethanesulfonyl chloride with cesium fluoride in the presence of trapping agents.[6]

(CH3)3SiCH2SO2Cl + CsF → [CH2=SO2] + (CH3)3SiF + CsCl

Reactions

Sulfenes react with enamines, ynamines, and 1,3-cyclopentadienes to give thietanes, thietes and Diels-Alder adducts, respectively. In the presence of a chiral tertiary amine complex, several sulfenes could be trapped with trichloroacetaldehyde (chloral) in a catalytic asymmetric synthesis of β-sultones (four-membered ring sulfonate esters).[7] Sulfene can also undergo insertion into metal-hydrogen bonds.[8]

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006) "sulfenes".
  2. Zwanenburg, B (2004). "S,S-Dioxides of Thioaldehydes and Thioketones (Sulfenes and Derivatives)". Sci. Synth. 27: 123–134.
  3. King, JF (1975). "Return of Sulfenes". Acc. Chem. Res. 8 (1): 10–17. doi:10.1021/ar50085a002.
  4. Stork, G; Borowitz, IJ (1962). "Four-membered Sulfones from Enamines and Aliphatic Sulfonyl Halides". J. Am. Chem. Soc. 84 (2): 313. doi:10.1021/ja00861a042.
  5. Opitz, G; Adolph, H (1962). "Cycloaddition of Sulfenes to Enamines". Angew. Chem. Int. Ed. 1 (2): 113–114. doi:10.1002/anie.196201133.
  6. Block, E; Aslam, M (1982). "A New Sulfene Synthesis". Tet. Lett. 23 (41): 4203–4206. doi:10.1016/S0040-4039(00)88704-3.
  7. Koch, FM; Peters, R (2011). "Lewis Acid/Base Catalyzed [2+2]-Cycloaddition of Sulfenes and Aldehydes: A Versatile Entry to Chiral Sulfonyl and Sulfinyl Derivatives". Chem. Eur. J. 17: 3679–3692. doi:10.1002/chem.201003542.
  8. Ingo-Peter Lorenz (April 1978). "Demonstration of "Sulfene" Insertion into the Metal-Hydrogen Bond". Angew. Chem. Int. Ed. 17 (4): 285–286. doi:10.1002/anie.197802851.
This article is issued from Wikipedia - version of the Friday, February 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.