Sunflower (mathematics)
![](../I/m/Sonnenblume_02_KMJ.jpg)
In mathematics, a sunflower or -system is a collection of sets whose pairwise intersection is constant, and called the kernel.
The -lemma, sunflower lemma, and sunflower conjecture give various conditions that imply the existence of a large sunflower in a given collection of sets.
The original term for this concept was "-system". More recently the term "sunflower", possibly introduced by Deza & Frankl (1981), has been gradually replacing it.
Formal definition
Suppose is a universe set and
is a collection of subsets of
. The collection
is a sunflower (or
-system) if there is a subset
of
such that for each distinct
and
in
, we have
. In other words,
is a sunflower if the pairwise intersection of each set in
is constant.
Δ-lemma
The -lemma states that every uncountable collection of finite sets contains an uncountable
-system.
The -lemma is a combinatorial set-theoretic tool used in proofs to impose an upper bound on the size of a collection of pairwise incompatible elements in a forcing poset. It may for example be used as one of the ingredients in a proof showing that it is consistent with Zermelo-Fraenkel set theory that the continuum hypothesis does not hold. It was introduced by Shanin (1946).
Δ-lemma for ω2
If is an
-sized collection of countable subsets of
, and if the continuum hypothesis holds, then there is an
-sized
-subsystem. Let
enumerate
. For
, let
. By Fodor's lemma, fix
stationary in
such that
is constantly equal to
on
.
Build
of cardinality
such that whenever
are in
then
. Using the continuum hypothesis, there are only
-many countable subsets of
, so by further thinning we may stabilize the kernel.
Sunflower lemma and conjecture
Erdős & Rado (1960, p. 86) proved the sunflower lemma, stating that if and
are positive integers then a collection of
sets of cardinality at most
contains a sunflower with more than a sets. The sunflower conjecture is one of several variations of the conjecture of (Erdős & Rado 1960, p. 86) that the factor of
can be replaced by
for some constant
.
References
- Deza, M.; Frankl, P. (1981), "Every large set of equidistant (0,+1,–1)-vectors forms a sunflower", Combinatorica 1 (3): 225–231, doi:10.1007/BF02579328, ISSN 0209-9683, MR 637827
- Erdős, Paul; Rado, R. (1960), "Intersection theorems for systems of sets", Journal of the London Mathematical Society, Second Series 35 (1): 85–90, doi:10.1112/jlms/s1-35.1.85, ISSN 0024-6107, MR 0111692
- Jech, Thomas (2003). Set Theory. Springer.
- Kunen, Kenneth (1980). Set Theory: An Introduction to Independence Proofs. North-Holland. ISBN 0-444-85401-0.
- Shanin, N. A. (1946), "A theorem from the general theory of sets", C. R. (Doklady) Acad. Sci. URSS (N.S.) 53: 399–400