Superconformal algebra

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. It generates the superconformal group in some cases (In two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup.).

In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, there is a finite number of known examples of superconformal algebras.

Superconformal algebra in 3+1D

According to [1][2] the \mathcal{N}=1 superconformal algebra in 3+1D is given by the bosonic generators P_\mu, D, M_{\mu\nu}, K_\mu, the U(1) R-symmetry A, the SU(N) R-symmetry T^i_j and the fermionic generators Q^{\alpha i}, \overline{Q}^{\dot\alpha}_i, S^\alpha_i and {\overline{S}}^{\dot\alpha i}. Here, \mu,\nu,\rho,\dots denote spacetime indices; \alpha,\beta,\dots left-handed Weyl spinor indices; \dot\alpha,\dot\beta,\dots right-handed Weyl spinor indices; and i,j,\dots the internal R-symmetry indices.

The Lie superbrackets of the bosonic conformal algebra are given by

[M_{\mu\nu},M_{\rho\sigma}]=\eta_{\nu\rho}M_{\mu\sigma}-\eta_{\mu\rho}M_{\nu\sigma}+\eta_{\nu\sigma}M_{\rho\mu}-\eta_{\mu\sigma}M_{\rho\nu}
[M_{\mu\nu},P_\rho]=\eta_{\nu\rho}P_\mu-\eta_{\mu\rho}P_\nu
[M_{\mu\nu},K_\rho]=\eta_{\nu\rho}K_\mu-\eta_{\mu\rho}K_\nu
[M_{\mu\nu},D]=0
[D,P_\rho]=-P_\rho
[D,K_\rho]=+K_\rho
[P_\mu,K_\nu]=-2M_{\mu\nu}+2\eta_{\mu\nu}D
[K_n,K_m]=0
[P_n,P_m]=0

where η is the Minkowski metric; while the ones for the fermionic generators are:

\left\{ Q_{\alpha i}, \overline{Q}_{\dot{\beta}}^j \right\} = 2 \delta^j_i \sigma^{\mu}_{\alpha \dot{\beta}}P_\mu
\left\{ Q, Q \right\} = \left\{ \overline{Q}, \overline{Q} \right\} = 0
\left\{ S_{\alpha}^i, \overline{S}_{\dot{\beta}j} \right\} = 2 \delta^i_j \sigma^{\mu}_{\alpha \dot{\beta}}K_\mu
\left\{ S, S \right\} = \left\{ \overline{S}, \overline{S} \right\} = 0
\left\{ Q, S \right\} =
\left\{ Q, \overline{S} \right\} = \left\{ \overline{Q}, S \right\} = 0

The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:

[A,M]=[A,D]=[A,P]=[A,K]=0
[T,M]=[T,D]=[T,P]=[T,K]=0

But the fermionic generators do carry R-charge:

[A,Q]=-\frac{1}{2}Q
[A,\overline{Q}]=\frac{1}{2}\overline{Q}
[A,S]=\frac{1}{2}S
[A,\overline{S}]=-\frac{1}{2}\overline{S}
[T^i_j,Q_k]= - \delta^i_k Q_j
[T^i_j,{\overline{Q}}^k]= \delta^k_j {\overline{Q}}^i
[T^i_j,S^k]=\delta^k_j S^i
[T^i_j,\overline{S}_k]= - \delta^i_k \overline{S}_j

Under bosonic conformal transformations, the fermionic generators transform as:

[D,Q]=-\frac{1}{2}Q
[D,\overline{Q}]=-\frac{1}{2}\overline{Q}
[D,S]=\frac{1}{2}S
[D,\overline{S}]=\frac{1}{2}\overline{S}
[P,Q]=[P,\overline{Q}]=0
[K,S]=[K,\overline{S}]=0

Superconformal algebra in 2D

There are two possible algebras; a Neveu–Schwarz algebra and a Ramond algebra.

See also

References

  1. West, Peter C. (1997). "Introduction to rigid supersymmetric theories". arXiv:hep-th/9805055.
  2. Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics 58: 1–548. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G.
This article is issued from Wikipedia - version of the Wednesday, May 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.