Realization (systems)

Realization, in the system theory context refers to a state space model implementing a given input-output behavior. That is, given an input-output relationship, a realization is a quadruple of (time-varying) matrices [A(t),B(t),C(t),D(t)] such that

\dot{\mathbf{x}}(t) = A(t) \mathbf{x}(t) + B(t) \mathbf{u}(t)
\mathbf{y}(t) = C(t) \mathbf{x}(t) + D(t) \mathbf{u}(t)

with (u(t),y(t)) describing the input and output of the system at time t.

LTI System

For a linear time-invariant system specified by a transfer matrix,  H(s) , a realization is any quadruple of matrices  (A,B,C,D) such that  H(s) = C(sI-A)^{-1}B+D.

Canonical realizations

Any given transfer function which is strictly proper can easily be transferred into state-space by the following approach (this example is for a 4-dimensional, single-input, single-output system)):

Given a transfer function, expand it to reveal all coefficients in both the numerator and denominator. This should result in the following form:

 H(s) = \frac{n_{1}s^{3} + n_{2}s^{2} + n_{3}s + n_{4}}{s^{4} + d_{1}s^{3} + d_{2}s^{2} + d_{3}s + d_{4}}.

The coefficients can now be inserted directly into the state-space model by the following approach:

\dot{\textbf{x}}(t) = \begin{bmatrix}
                               -d_{1}& -d_{2}& -d_{3}& -d_{4}\\
                                1&      0&      0&      0\\
                                0&      1&      0&      0\\
                                0&      0&      1&      0
                             \end{bmatrix}\textbf{x}(t) + 
                             \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ \end{bmatrix}\textbf{u}(t)
 \textbf{y}(t) = \begin{bmatrix} n_{1}& n_{2}& n_{3}& n_{4} \end{bmatrix}\textbf{x}(t).

This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state).

The transfer function coefficients can also be used to construct another type of canonical form

\dot{\textbf{x}}(t) = \begin{bmatrix}
                               -d_{1}&   1&  0&  0\\
                               -d_{2}&   0&  1&  0\\
                               -d_{3}&   0&  0&  1\\
                               -d_{4}&   0&  0&  0
                             \end{bmatrix}\textbf{x}(t) + 
                             \begin{bmatrix} n_{1}\\ n_{2}\\ n_{3}\\ n_{4} \end{bmatrix}\textbf{u}(t)
 \textbf{y}(t) = \begin{bmatrix} 1& 0& 0& 0 \end{bmatrix}\textbf{x}(t).

This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).

General System

D = 0

If we have an input u(t), an output y(t), and a weighting pattern T(t,\sigma) then a realization is any triple of matrices [A(t),B(t),C(t)] such that T(t,\sigma) = C(t) \phi(t,\sigma) B(\sigma) where \phi is the state-transition matrix associated with the realization.[1]

System identification

Main article: System identification

System identification techniques take the experimental data from a system and output a realization. Such techniques can utilize both input and output data (e.g. eigensystem realization algorithm) or can only include the output data (e.g. frequency domain decomposition). Typically an input-output technique would be more accurate, but the input data is not always available.


See also

References

  1. Brockett, Roger W. (1970). Finite Dimensional Linear Systems. John Wiley & Sons. ISBN 978-0-471-10585-5.
This article is issued from Wikipedia - version of the Saturday, April 11, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.