Biomphalaria glabrata

Biomphalaria glabrata
An albino individual of Biomphalaria glabrata. (All snails in the family Planorbidae have the red oxygen transport pigment hemoglobin, but this is especially apparent in albino animals.)
Scientific classification
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
(unranked): clade Heterobranchia
clade Euthyneura
clade Panpulmonata
clade Hygrophila
Superfamily: Planorboidea
Family: Planorbidae
Subfamily: Planorbinae
Tribe: Biomphalariini
Genus: Biomphalaria
Species: B. glabrata
Binomial name
Biomphalaria glabrata
(Say, 1818)[1]
Synonyms
  • Planorbis glabratus Say, 1818
  • Australorbis glabratus (Say, 1818)
  • Taphius glabratus (Say, 1818)
  • Planorbis guadaloupensis Sowerby
  • Planorbis ferrugineus Spix, 1827
  • Planorbis olivaceus Spix, 1827
  • Planorbis nigricans Spix, 1827
  • Planorbis albescens Spix, 1827
  • Planorbis viridis Spix, 1827
  • Planorbis lugubris J. A. Wagner, 1827

Biomphalaria glabrata is a species of air-breathing freshwater snail, an aquatic pulmonate gastropod mollusk in the family Planorbidae, the ram's horn snails.

Biomphalaria glabrata is an intermediate snail host for the trematode Schistosoma mansoni, which is one of the main schistosomes that infect humans.[2] This snail is a medically important pest,[3] because of transferring the disease intestinal schistosomiasis, the most widespread of all types of schistosomiasis.

The parasite Schistosoma mansoni (which these snails and other Biomphalaria snails carry) infects about 83.31 million people worldwide.[4]

Biomphalaria glabrata/Schistosoma mansoni provides a useful model system for investigating the intimate interactions between host and parasite.[2] There is a great deal of information available about this snail, because it has been, and continues to be, under intensive study by many malacologists, parasitologists and other researchers, on account of its medical significance.

The shell of this species, like all planorbids, is sinistral in coiling, but it is carried upside down, and thus it appears to be dextral.

Distribution

Biomphalaria glabrata is a Neotropical[3] species. Its native distribution includes the Caribbean: Puerto Rico,[5] Dominican Republic,[6] Saint Lucia,[7] Haiti (first report in 1891),[8] Martinique, Guadeloupe,[9] Antigua, Vieques, Saint Martin, Saint Kitts, Curaçao, Dominica (it was probably replaced by other Biomphalaria species in Dominica or it was eradicated),[10] Montserrat and in South America: Venezuela, Suriname, French Guiana and Brazil.[11]

This species has recently expanded its native range,[3] but there is reduced its abundance in the Caribbean, because of competition with non-indigenous species and environmental change.[12]

It inhabits new localities in the time of flooding.[13]

Shell description

Like all planorbids, the shell of Biomphalaria glabrata is planispiral, in other words coiled flat like a rope, and the spire of the shell is sunken. Also, like all planorbids, this species has a sinistral shell, in other words, the coiling of the shell is left-handed. However, like all the snails in the subfamily Planobinae, this snail carries its coiled shell upside down, and thus the shell appears to be dextral in coiling. In other families of snails the spire is situated on top of the shell, here what shows on top of the shell is in fact the umbilicus.

Biomphalaria glabrata was discovered and described under the name Planorbis glabratus by American naturalist Thomas Say in 1818.[1] Say's type description reads as follows:

Shell sinistral; whorls about five, glabrous or obsoletely rugose, polished, destitute of any appearance of carina; spire perfectly regular, a little concave; umbilicus large, regularly and deeply concave, exhibiting all the volutions to the summit; aperture declining, remarkably oblique with respect to the transverse diameter. Breadth nearly nine-tenths of an inch.

Unfortunately Say listed an incorrect type locality: North Carolina.[1] The shell was probably actually from the West Indian island of Guadeloupe.[11]

The shell of animals from natural habitats is usually olivaceous (olive drab) in color.[11] The width of the shell of adults snails is 6–10 mm.[14]

An adult shell consist of aragonite and sometimes there is also under 1.5% of vaterite especially near the margin of the shell.[15]

Anatomy

The anatomy of the mantle cavity is described in Sullivan et al. (1974)[16] and Jurberg et al. (1997).[17]

Genetics

The genome length is estimated as about 929,10 Mb (millions of base pairs; 0.95 ± 0.01 pg),[18] which is a small genome size among gastropods.[19] Sequencing of the whole genome was approved as a priority by National Human Genome Research Institute in August 2004,[20] in 2009 it was still in progress. Its participants also include the "Biomphalaria glabrata Genome Initiative" and the Genome Center at Washington University in St. Louis.[13]

The chromosomes in this snail are small, and the haploid number of chromosomes is 18.[21]

A complete genome sequence from the mitochondria of this species has been available since 2004: the mitochondrial genome sequence has 13670 nucleotides.[22][23]

The ancestor of Biomphalaria glabrata colonized Africa, and speciated into all of the African Biomphalaria species.[24]

Phylogeny

A cladogram showing phylogenic relations of species in the genus Biomphalaria:[24]

Biomphalaria





African species



Biomphalaria stanleyi



Biomphalaria pfeifferi




Biomphalaria camerunensis



Nilotic species complex



Biomphalaria sudanica



Biomphalaria choanomphala




Biomphalaria alexandrina




Biomphalaria smithi





Biomphalaria glabrata






Biomphalaria straminea complex


Biomphalaria kuhniana



Biomphalaria straminea





Biomphalaria straminea



Biomphalaria intermedia






Biomphalaria amazonica



Biomphalaria sp.






Biomphalaria tenagophila



Biomphalaria occidentalis







Biomphalaria prona



Biomphalaria andecola




Biomphalaria sp. (? Biomphalaria havanensis)








Biomphalaria sp. (? Biomphalaria havanensis)



Biomphalaria temascalensis




Biomphalaria obstructa





Biomphalaria helophila




Biomphalaria peregrina




Biomphalaria schrammi



Ecology

Biomphalaria glabrata inhabits small streams, ponds[25] and marshes. These snails can survive in aestivation for a few months when removed from their freshwater habitat or when the habitat dries out.[26] For example, the snail lives in banana plantation drains in Saint Lucia.[27]

Biomphalaria glabrata can also survive up to 16 hours in anaerobic water using lactic acid fermentation.[28]

Like other species, this snail is "light sensitive" and can be disrupted by artificial light.[29]

Feeding habits

Biomphalaria glabrata feeds on bacterial films, algae, diatoms and decaying macrophytes.[30]

They can be fed using fish food and lettuce when they are kept in captivity.[31]

Life cycle

Biomphalaria glabrata snails lay egg masses at rather a high rate (about 1 per day).[5] One snail can lay 14,000 eggs during its whole life span.[30]

The periostracum of the embryonic shell (inside the egg) begin to grow in 48-hour old embryos.[32] Amorphous calcium carbonate appear in 54-60-hour old embryos.[32] Calcification (formation of aragonite) of the embryonic shell starts in the time interval between 60-hour old embryos and 72-hour-old ones.[31] The weight of the shell of 72-hour-old embryo is 0.64 μg.[32]

The weight of the embryonic shell in 5-day old (120 hours old) embryos a very short time before hatching, is 30.3 μg, and the width is 500 μm.[32] The juvenile snail hatches from 5–6 days old eggs.[32] The weight of the juvenile shell is 2.04 mg in four weeks after hatching.[32] There is no vaterite in juvenile shells.[15]

The growth rate, maximum birth rate, and longevity of Biomphalaria glabrata was studied by Pimentel (1957).[5] There can be up to seven generations in one year in laboratory.[30] The generation time (the time it takes a snail from developing from an egg to laying an egg of its own) is 4–6 weeks.[13] The lifespan is 15–18 months in natural conditions.[30] The lifespan in laboratory conditions can be up to 18–24 months,[30] but usually it is 9–12 months.[13]

Biomphalaria glabrata is a simultaneous hermaphrodite,[25] but self-fertilization is also possible.[30] The mucus of this snail species contains species-specific signals that allow individual snails to identify others of the same species,[33] but the causative mucus components decay within 10 to 30 min.[25][33][34] The typically unilateral copulations[35] are initiated when a male actor mounts the shell of a prospective mate. The male actor then moves towards the frontal left edge of the partner's shell, where he probes the female gonopore with his penis to subsequently achieve penis intromission. Following a typically 5-87 min penis intromission with usually successful sperm transfer,[36] the male actor retracts to terminate copulation. Mating roles are subsequently exchanged in about 45% of all copulations, with the male actor now taking the female role, and vice versa.[25] In 2009, Biomphalaria glabrata was a subject of the study focusing on the Coolidge effect in simultaneous hermaphrodites. The result of this research is that Biomphalaria glabrata shows the absence of any sex-specific effects of partner novelty, which means there is no Coolidge effect in this species.[25]

Parasites

Biomphalaria glabrata is a major intermediate host for Schistosoma mansoni in the Americas and a vector of schistosomiasis.[37]

In medical research, the most commonly used Biomphalaria glabrata snail stock (used for the maintenance of Schistosoma mansoni) is albino, i.e. it is without pigment. It is descended from a mutant albino stock which arose during research by Newton (1955).[38] Not only did this albino variety prove to be highly susceptible to Schistosoma mansoni, but the lack of pigment allowed investigators using a dissecting microscope to view the development of the parasite within the snail. The black pigment normally found in snails that are taken from the field previously made this viewing too difficult.[37]

Some other trematodes are also natural parasites of Biomphalaria glabrata:

Experimental parasites include:

Interaction with schistosome

Schistosoma mansoni can infect juveniles of Biomphalaria glabrata much more easily than it can adults.[13] Schistosoma mansoni causes parasitic castration in infected snails.[13]

Interactions between snails and schistosomes are complex and there exists an urgent need to elucidate pathways involved in snail-parasite relationships as well as to identify those factors involved in the intricate balance between the snail internal defence system and trematode infectivity mechanisms that determine the success or failure of an infection.[2]

Molluscs appear to lack an adaptive immune system like that found in vertebrates and, instead, are considered to use various innate mechanisms involving cell-mediated and humoral reactions (non-cellular factors in plasma/serum or hemolymph) that interact to recognize and eliminate invading pathogens or parasites in incompatible or resistant snails. However, a diverse family of fibrinogen-related proteins (FREPs) containing immunoglobulin-like domains has been discovered in Biomphalaria glabrata and may play a role in snail defence. Circulating haemocytes (macrophage-like defence cells) in the snail haemolymph are known to aggregate in response to trauma, phagocytose small particles (bacteria, and fungi) and encapsulate larger ones, such as parasites. Final killing is effected by hemocyte-mediated cytotoxicity mechanisms involving non-oxidative and oxidative pathways, including lysosomal enzymes and reactive oxygen/nitrogen intermediates. Certain alleles of cytosolic copper/zinc superoxide dismutase (SOD1) have been associated with resistance also suggesting these processes are important in the snail internal defence system.[2]

Predators

The freshwater snail Marisa cornuarietis is a predator of Biomphalaria glabrata: it feeds on its eggs, juvenile and adult snails.[47] It also acts as a competitor.[47]

Competitors

Melanoides tuberculata is considered to be a competitor of Biomphalaria glabrata, but all the intraspecific interactions are not fully understood yet.[48] Although in various countries there were contradictory results,[48] and despite this situation being unpredictable and thus possible ecological damage might result, Melanoides tuberculata is nonetheless used in an attempt to control or reduce populations of Biomphalaria glabrata in Brazil,[48] in the West Indies,[7] and in Venezuela.

Symbionts

A single-celled symbiont Capsaspora owczarzaki was discovered in the haemolymph of Biomphalaria glabrata in 2002.[49]

Hybrid

There is one known hybrid: Biomphalaria glabrata × Biomphalaria alexandrina, from Egypt.[50]

Toxicology

The absolute lethal concentration (LC100) of glucose/mannose-binding lectins from plants Canavalia brasiliensis, Cratylia floribunda, Dioclea guianensis, Dioclea grandiflora and Dioclea virgata for adults of Biomphalaria glabrata is 50 μg mL−1.[51]

The latex of Euphorbia conspicua is toxic to adults of Biomphalaria glabrata.[52]

Four species of the genus Solanum from Brazil are toxic to Biomphalaria glabrata.[53]

Some species of Annona are toxic to adults of Biomphalaria glabrata and to its eggs.[54]

References

This article incorporates public domain text from reference,[1] CC-BY-2.5 text (but not under GFDL) from reference [37] and CC-BY-2.0 text from references.[2][25]

  1. 1 2 3 4 Say T. (June 1818) "Account of two new genera, and several new species, of fresh water and land shells". Journal of the Academy of Natural Sciences of Philadelphia 1(2): 276-284. page 280.
  2. 1 2 3 4 5 Lockyer, A. E.; Spinks, J.; Kane, R. A.; Hoffmann, K. F.; Fitzpatrick, J. M.; Rollinson, D.; Noble, L. R.; Jones, C. S. (2008). "Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni".". BMC Genomics 9: 634. doi:10.1186/1471-2164-9-634.
  3. 1 2 3 Pointier, J. P.; David, P.; Jarne, P. (2005). "Biological invasions: The case of planorbid snails". Journal of helminthology 79 (3): 249–256. doi:10.1079/JOH2005292. PMID 16153319..
  4. Crompton, D. W. (1999). "How much human helminthiasis is there in the world?" (PDF). The Journal of Parasitology 85 (3): 397–403. doi:10.2307/3285768. JSTOR 3285768. PMID 10386428., PDF, JSTOR
  5. 1 2 3 Pimentel D. (October 1957) "Life history of Australorbis glabratus, the intermediate snail host of Schistosoma mansoni in Puerto Rico". Ecol 38(4): 576-580.
  6. Steffey, E. P.; Howland Jr, D. (1977). "Isoflurane potency in the dog and cat". American journal of veterinary research 38 (11): 1833–1836. PMID 931167.
  7. 1 2 PointierJ, P (1993). "The introduction of Melanoides tuberculata (Mollusca: Thiaridae) to the island of Saint Lucia (West Indies) and its role in the decline of Biomphalaria glabrata, the snail intermediate host of Schistosoma mansoni".". Acta Tropica 54 (1): 13–18. doi:10.1016/0001-706x(93)90064-i.
  8. Raccurt C. P., Sodeman W. A. Jr., Rodrick G. L. & Boyd W. P. (1985). "Biomphalaria glabrata in Haiti". Transactions of the Royal Society of Tropical Medicine and Hygiene 79(4): 455-457. abstract.
  9. Sturrock R. F. (1974). "Ecological notes on habitats of the freshwater snail Biomphalaria glabrata, intermediate host of Schistosoma mansoni on St. Lucia, West Indies". Caribbean Journal of Science 14(3-4): 149-162. PDF.
  10. Reeves, W. K.; Dillon, R. T.; Dasch, G. A. (2008). "Freshwater snails (Mollusca: Gastropoda) from the Commonwealth of Dominica with a discussion of their roles in the transmission of parasites". American Malacological Bulletin 24: 59–63. doi:10.4003/0740-2783-24.1.59.. PDF.
  11. 1 2 3 Paraense W. L. (2001) "The Schistosome Vectors in the Americas". Memórias do Instituto Oswaldo Cruz 96(Supplement): 7-16. text, PDF
  12. Morgan, J. A.; Dejong, R. J.; Snyder, S. D.; Mkoji, G. M.; Loker, E. S. (2001). "Schistosoma mansoni and Biomphalaria: Past history and future trends". Parasitology. 123 Suppl (7): S211–S228. doi:10.1017/s0031182001007703. PMID 11769285.
  13. 1 2 3 4 5 6 The Genome Center at Washington University in St. Louis. Biomphalaria glabrata Accessed 21 November.
  14. Baeza Garcia, A.; Pierce, R. J.; Gourbal, B.; Werkmeister, E.; Colinet, D.; et al. (2010). "Involvement of the Cytokine MIF in the Snail Host Immune Response to the Parasite Schistosoma mansoni".". PLoS Pathogens 6 (9): e1001115. doi:10.1371/journal.ppat.1001115.
  15. 1 2 Hasse, B.; Ehrenberg, H.; Marxen, J. C.; Becker, W.; Epple, M. (2000). "Calcium Carbonate Modifications in the Mineralized Shell of the Freshwater SnailBiomphalaria glabrata". Chemistry - A European Journal 6 (20): 3679–3685. doi:10.1002/1521-3765(20001016)6:20<3679::AID-CHEM3679>3.0.CO;2-#. PMID 11073237.
  16. Sullivan, J. T.; Cheng, T. C. (1974). "Structure and function of the mantle cavity of Biomphalaria glabrata (Mollusca: Pulmonata)". Transactions of the American Microscopical Society 93 (3): 416–420. doi:10.2307/3225446. PMID 4854431., JSTOR.
  17. Jurberg P., Cunha R. A. & Rodrigues M. L. (1997) "Behavior of Biomphalaria glabrata Say, 1818 (Gastropoda: Planorbidae) - I. Morphophysiology of the Mantle Cavity". Memórias do Instituto Oswaldo Cruz 92(2): 287-295. abstract text
  18. Gregory, T. R. (2003). "Genome size estimates for two important freshwater molluscs, the zebra mussel (Dreissena polymorpha) and the schistosomiasis vector snail (Biomphalaria glabrata)" (PDF). Genome 46: 841–844. doi:10.1139/g03-069.
  19. Knight M., Adema C. M., Raghavan N., Loker E. S., Lewis F. A. & Tettelin H. (2003) "Obtaining the genome sequence of the mollusc Biomphalaria glabrata: a major intermediate host for the parasite causing human schistosomiasis". Online at http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/BiomphalariaSEQv.2.pdf National Human Genome Research Institute. Accessed 20 November 2009
  20. Approved Sequencing Targets. Last updated 14 September 2009. Accessed 21 November 2009
  21. Goldman M. A., Loverde P. T., Chrisman C. L., & Franklin D. A. (1984) "Chromosomal evolution in planorbid snails of the genera Bulinus and Biomphalaria". Malacologia 25(2): 427-446.
  22. DeJong, R. J.; Emery, A. M.; Adema, C. M. (2004). "The mitochondrial genome of Biomphalaria glabrata (Gastropoda: Basommatophora), intermediate host of Schistosoma mansoni".". Journal of Parasitology 90 (5): 991–997. doi:10.1645/GE-284R.
  23. [Organism%3Anoexp] , accessed 20 November 2009.
  24. 1 2 Dejong, R. J.; Morgan, J. A.; Paraense, W. L.; Pointier, J. P.; Amarista, M.; Ayeh-Kumi, P. F.; Babiker, A.; Barbosa, C. S.; Brémond, P.; Pedro Canese, A.; De Souza, C. P.; Dominguez, C.; File, S.; Gutierrez, A.; Incani, R. N.; Kawano, T.; Kazibwe, F.; Kpikpi, J.; Lwambo, N. J.; Mimpfoundi, R.; Njiokou, F.; Noël Poda, J.; Sene, M.; Velásquez, L. E.; Yong, M.; Adema, C. M.; Hofkin, B. V.; Mkoji, G. M.; Loker, E. S. (2001). "Evolutionary relationships and biogeography of Biomphalaria (Gastropoda: Planorbidae) with implications regarding its role as host of the human bloodfluke, Schistosoma mansoni". Molecular Biology and Evolution 18 (12): 2225–2239. doi:10.1093/oxfordjournals.molbev.a003769. PMID 11719572., text.
  25. 1 2 3 4 5 6 Häderer I. K., Werminghausen J., Michiels N. K., Timmermeyer N. & Anthes N. (12 October 2009) "No effect of mate novelty on sexual motivation in the freshwater snail Biomphalaria glabrata". Frontiers in Zoology 66: 23. doi:10.1186/1742-9994-6-23.
  26. Majoros G., Fehér Z., Deli T. & Földvári G. (11 November 2008) "Establishment of Biomphalaria tenagophila snails in Europe". letter, Emerging Infectious Diseases 14(11): 1812-1814. doi:10.3201/eid1411.080479 PMID 18976582
  27. Sturrock, R. F. (1975). "Distribution of the snail Biomphalaria glabrata, intermediate host of Schistosoma mansoni, within a St Lucian field habitat". Bulletin of the World Health Organization 52 (3): 267–272. PMC 2366373. PMID 1084797. abstract PDF.
  28. Brand, T. V.; Baernstein, H. D.; Mehlman, B. (1950). "Studies on the anaerobic metabolism and the aerobic carbohydrate consumption of some fresh water snails". The Biological bulletin 98 (3): 266–276. doi:10.2307/1538675. PMID 15420230., article and PDF
  29. Pimentel-Souza, F.; Schall, V. T.; Lautner, R. Jr.; Barbosa, N. D. C.; Schettino, M; Fernandes, N. (1984). "Behavior of Biomphalaria glabrata (Gastropoda: Pulmonata) under different lighting conditions". Canadian Journal of Zoology 62: 2328–2334. doi:10.1139/z84-340.
  30. 1 2 3 4 5 6 What is Biomphalaria glabrata? UNM Biology Department Home Page. Accessed 20 November 2009.
  31. 1 2 Marxen J. C., Prymak O., Beckmann F., Neues F. & Epple M. (2008) "Embryonic shell formation in the snail Biomphalaria glabrata: a comparison between scanning electron microscopy (SEM) and synchrotron radiation micro computer tomography (SRµCT)". Journal of Molluscan Studies 74(1): 19-26. doi:10.1093/mollus/eym044, abstract.
  32. 1 2 3 4 5 6 Neues F. & Epple M. (29 August 2008) "X-ray Microcomputer Tomography for the Study of Biomineralized Endo- and Exoskeletons of Animals". Chemical Reviews 108(11): 4734-4741. doi:10.1021/cr078250m.
  33. 1 2 Townsend, C. R. (1974). "Mucus trail following by the snail Biomphalaria glabrata (Say)".". Animal Behaviour 22 (1): 170–177. doi:10.1016/S0003-3472(74)80066-7.
  34. Wells, M. J.; Buckley, S.K.L. (1972). "Snails and trails". Animal Behaviour 20 (2): 345–355. doi:10.1016/S0003-3472(72)80057-5.
  35. Trigwell, J. A.; Dussart, G. B. J.; Vianey-Liaud, M. (1997). "Pre-copulatory behaviour of the freshwater hermaphrodite snail Biomphalaria glabrata (Say, 1818) (Gastropoda: Pulmonata)".". Journal of Molluscan Studies 63: 116–120. doi:10.1093/mollus/63.1.116.
  36. Vianey-Liaud, M (1995). "Bias in the production of heterozygous pigmented embryos from successively mated Biomphalaria glabrata (Gastropoda: Planorbidae) albino snails". Malacological Review 28: 97–106.
  37. 1 2 3 Lewis F. A., Liang Y.-s., Raghavan N. & Knight M. (30 July 2008) "The NIH-NIAID Schistosomiasis Resource Center". PLoS Neglected Tropical Diseases 2(7): e267. doi:10.1371/journal.pntd.0000267
  38. Newton, W. L. (1955). "The establishment of a strain of Australorbis glabratus which combines albinism and high susceptibility to infection with Schistosoma mansoni".". J Parasitol 41: 526–528. doi:10.2307/3273814.
  39. Basch, P. F.; Sturrock, R. F. (1969). "Life History of Ribeiroia marini (Faust and Hoffman, 1934) comb. n. (Trematoda: Cathaemasiidae)". Journal of Parasitology 55 (6): 1180–1184. doi:10.2307/3277252. JSTOR 3277252.
  40. Duval, D.; Galinier, R.; Mouahid, G.; Toulza, E.; Allienne, J. F.; et al. (2015). "A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?".". PLOS Neglected Tropical Diseases 9 (2): e0003489. doi:10.1371/journal.pntd.0003489.
  41. Barçante; Barçante, T. A.; Dias, S. R. C.; Lima, W. D. S. (2003). "Angiostrongylus vasorum (Baillet, 1866) Kamensky, 1905: emergence of third-stage larvae from infected Biomphalaria glabrata snails". Parasitology Research 91 (6): 471–475. doi:10.1007/s00436-003-1000-9.
  42. Schneck, J. L.; Fried, B. (2004). "Effects of snail size on encystment of Echinostoma caproni in juvenile Biomphalaria glabrata (NMRI strain) and observations on the survival of infected snails". Journal of Helminthology 78 (3): 277–279. doi:10.1079/JOH2004235.
  43. Degaffé, G.; Loker, E. S. (1998). "Susceptibility ofBiomphalaria glabratato Infection withEchinostoma paraensei:Correlation with the Effect of Parasite Secretory–Excretory Products on Host Hemocyte Spreading". Journal of Invertebrate Pathology 71 (1): 64–72. doi:10.1006/jipa.1997.4710. PMID 9446739..
  44. Anderson, J. W.; Fried, B. (1987). "Experimental infection of Physa heterostropha, Helisoma trivolvis, and Biomphalaria glabrata (Gastropoda) with Echinostoma revolutum (Trematoda) Cercariae". The Journal of Parasitology 73 (1): 49–54. doi:10.2307/3282342. PMID 3572665..
  45. Fried, B.; Idris, N.; Ohsawa, T. (1995). "Experimental infection of juvenile Biomphalaria glabrata with cercariae of Echinostoma trivolvis". The Journal of Parasitology 81 (2): 308–310. doi:10.2307/3283941. PMID 7707214., JSTOR
  46. Zakikhani M., Smith J. M. & Rau M. E. (February 2003) "Effects of Plagiorchis elegans (Digenea: Plagiorchiidae) Infection of Biomphalaria glabrata (Pulmonata: Planorbidae) on a Challenge Infection with Schistosoma mansoni (Digenea: Schistosomatidae)". Journal of Parasitology 89(1): 70-75. doi:10.1645/0022-3395(2003)089[0070:EOPEDP]2.0.CO;2 JSTOR PDF
  47. 1 2 Kobayashi, H. (1986). "An experimental study of epidermal keratin phosphorylation --epidermal keratin as a substrate protein of cAMP-dependent protein kinase". \Hokkaido igaku zasshi] the Hokkaido journal of medical science 61 (3): 453–462. PMID 2427426., PDF.
  48. 1 2 3 Giovanelli, A.; Vieira, M. V.; da Silva, C. L. P. A. C. (2005). "Interaction Between The Intermediate Host Of Schistosomiasis In Brazil, Biomphalaria Glabrata (Say, 1818) And A Possible Competitor, Melanoides Tuberculata (Müller, 1774) A Field Study". Journal of Molluscan Studies 71 (1): 7–13. doi:10.1093/mollus/eyi004.
  49. Hertel L. A., Bayne C. J. & Loke E. S. (2002), "The symbiont Capsaspora owczarzaki, nov. Gen. Nov. Sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea", International Journal for Parasitology 32 (9): 1183–91, doi:10.1016/S0020-7519(02)00066-8, PMID 12117501
  50. Yousif, F.; Ibrahim, A.; Abdel Kader, A.; El-Bardicy, S. (1998). "Invasion of the Nile Valley in Egypt by a hybrid of Biomphalaria glabrata and Biomphalaria alexandrina, snail vectors of Schistosoma mansoni". Journal of the Egyptian Society of Parasitology 28 (2): 569–582. PMID 9707685.
  51. Santos, A. F. d.; Cavada, B. S.; Rocha, B. A. M. da; Nascimento, K. S. d.; Sant'Ana, A. E. G. (2010). "Toxicity of some glucose/mannose-binding lectins to Biomphalaria glabrata and Artemia salina".". Bioresource Technology 101 (2): 794–798. doi:10.1016/j.biortech.2009.07.062.
  52. Santos, A. F. d.; Azevedo, D. P. L. d.; Mata, R. d. C. d. S.; Mendonça, D. I. M. D. d.; Sant'Ana, A. E. G. (2007). "The lethality of Euphorbia conspicua to adults of Biomphalaria glabrata, cercaria of Schistosoma mansoni and larvae of Artemia salina".". Bioresource Technology 98 (1): 135–139. doi:10.1016/j.biortech.2005.11.020.
  53. Silva, T. M. S.; Câmara, C. A.; Agra, M. d. F.; Carvalho, M. G. d.; Frana, M. T.; Brandoline, S. V. P. B.; Paschoal, L. d. S.; Braz-Filho, R. (2006). "Molluscicidal activity of Solanum species of the Northeast of Brazil on". Biomphalaria glabrata". Fitoterapia 77 (6): 449–452. doi:10.1016/j.fitote.2006.05.007.
  54. Santos, A. F. d.; Sant'Ana, A. E. G. (2001). "Molluscicidal properties of some species of Annona".". Phytomedicine 8 (2): 115–120. doi:10.1078/0944-7113-00008.

Further reading

External links

Wikimedia Commons has media related to Biomphalaria glabrata.
This article is issued from Wikipedia - version of the Friday, February 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.