Taylor expansions for the moments of functions of random variables
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
First moment
Notice that
, the 2nd term disappears. Also
is
. Therefore,
where
and
are the mean and variance of X respectively.[1]
It is possible to generalize this to functions of more than one variable using multivariate Taylor expansions. For example,
Second moment
Analogously,[1]
The above is using a first order approximation unlike for the method used in estimating the first moment. It will be a poor approximation in cases where
is highly non-linear. This is a special case of the delta method. For example,
See also
- Propagation of uncertainty
- WKB approximation
- http://web.stanford.edu/class/cme308/OldWebsite/notes/TaylorAppDeltaMethod.pdf
Notes
This article is issued from Wikipedia - version of the Saturday, March 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
![\begin{align}
\operatorname{E}\left[f(X)\right] & {} = \operatorname{E}\left[f(\mu_X + \left(X - \mu_X\right))\right] \\
& {} \approx \operatorname{E}\left[f(\mu_X) + f'(\mu_X)\left(X-\mu_X\right) + \frac{1}{2}f''(\mu_X) \left(X - \mu_X\right)^2 \right].
\end{align}](../I/m/ce5a74255f78c1b903b9ec038d72094e.png)
![\operatorname{E}\left[f(X)\right]\approx f(\mu_X) +\frac{f''(\mu_X)}{2}\sigma_X^2](../I/m/77ab65313a4db7c08d1b0c2ca09fbf87.png)
![\operatorname{E}\left[\frac{X}{Y}\right]\approx\frac{\operatorname{E}\left[X\right]}{\operatorname{E}\left[Y\right]} -\frac{\operatorname{cov}\left[X,Y\right]}{\operatorname{E}\left[Y\right]^2}+\frac{\operatorname{E}\left[X\right]}{\operatorname{E}\left[Y\right]^3}\operatorname{var}\left[Y\right]](../I/m/8f4e2fbf5af2e5ae7f411b61676ef776.png)
![\operatorname{var}\left[f(X)\right]\approx \left(f'(\operatorname{E}\left[X\right])\right)^2\operatorname{var}\left[X\right] = \left(f'(\mu_X)\right)^2\sigma^2_X.](../I/m/f87d005aea24db1e5a8e88f7bba09c84.png)
![\operatorname{var}\left[\frac{X}{Y}\right]\approx\frac{\operatorname{var}\left[X\right]}{\operatorname{E}\left[Y\right]^2}-\frac{2\operatorname{E}\left[X\right]}{\operatorname{E}\left[Y\right]^3}\operatorname{cov}\left[X,Y\right]+\frac{\operatorname{E}\left[X\right]^2}{\operatorname{E}\left[Y\right]^4}\operatorname{var}\left[Y\right].](../I/m/3d5fb1c612492ccde3074b7fee6038f6.png)