Tectonostratigraphy

In geology, tectonostratigraphy refers either to rock sequences in which large-scale layering is caused by the stacking of thrust sheets or nappes in areas of thrust tectonics or the effects of tectonics on lithostratigraphy.

Tectonically formed stratigraphy

One example of such a tectonostratigraphy is the Scandinavian Caledonides.[1] Within the entire exposed 1800 km length of this orogenic belt the following sequence is recognised from the base upwards:

undisturbed foreland of the Baltic plate
thrust sheets that have moved only a short distance (up to 10s of km) from their original position
far travelled thrust sheets derived from the Baltic plate passive margin, mainly sediments associated with the break-up of Rodinia
also derived from the margin of the Baltic plate, Proterozoic basement and its psammitic cover
thrust sheets including island arc and ophiolitic sequences
thrust sheets containing sediments with fossil assemblages indicating an origin on the margin of the Laurentian plate

This vertically stacked sequence thus represents the passive margins of Baltica and Laurentia and intervening island arcs and back-arc basins telescoped together and emplaced on top of the Baltic Shield, involving hundreds of km of shortening.

Within this overall stratigraphy the individual layers have their own tectonostratigraphy of stacked thrust sheets.

Generalised structural cross-section through the central part of the Gulf of Suez. PZ-LK = Paleozoic to lower Cretaceous Nubia (reservoir rock); UK-EO = Upper Cretaceous to Eocene pre-rift carbonate (source rock); N, R, K, and B = syn- and post-rift Nukhul, Rudeis, Kareem and Belayim formation (sources, reservoirs, seals and overburden); SG = South Gharib salt (seal and overburden); Z=Zeit (seals and overburden); and PP = Plio-Pleistocene (overburden)

Effects of active tectonics on lithostratigraphy

Tectonic events are typically recorded in sediments being deposited at the same time. In the case of a rift, for instance, the sedimentary sequence is normally broken down into three parts:[2]

This relatively straightforward nomenclature may become difficult to use, however, in the case of multiphase rifting with the post-rift from one event being the pre-rift to a later event.

References

  1. Roberts,D. & Gee,D. 1985. An introduction to the structure of the Scandinavian Caledonides. In Gee, D. G., and Sturt, B. A., eds. The Caledonide Orogen - Scandinavia and related areas.John Wiley and Sons, Chichester, 55-68.
  2. Jackson, C A L ,Gawthorpe, R L, Leppard, C W , Sharp, I R 2006. Rift-initiation development of normal fault blocks: insights from the Hammam Faraun fault block, Suez Rift, Egypt. Journal of the Geological Society, 163, 165-183.

See also


This article is issued from Wikipedia - version of the Tuesday, April 14, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.