Tetraphenylphosphonium chloride

Tetraphenylphosphonium chloride
Names
IUPAC name
Tetraphenylphosphonium chloride
Identifiers
2001-45-8 N
ChEMBL ChEMBL223885 YesY
ChemSpider 144578 YesY
Jmol 3D model Interactive image
PubChem 164911
Properties
C24H20ClP
Molar mass 374.84 g/mol
Appearance colourless solid
Density 1.27 g dm−3
Melting point 272 to 274 °C (522 to 525 °F; 545 to 547 K)
Hazards
R-phrases 36/37/38
S-phrases 26-36
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Tetraphenylphosphonium chloride is the chemical compound with the formula (C6H5)4PCl, abbreviated Ph4PCl or PPh4Cl. Tetraphenylphosphonium and especially tetraphenylarsonium salts were formerly of interest in gravimetric analysis of perchlorate and related oxyanions. This colourless salt is used to generate lipophilic salts from inorganic and organometallic anions. Thus, Ph4P+ is useful as a phase-transfer catalyst, again because it allows inorganic anions to dissolve in organic solvents.

Structure and basic properties

The cation is tetrahedral. PPh4Cl crystallises as the anhydrous salt,[1] which is normal item of commerce, as well as a monohydrate[2] and a dihydrate.[3]

In X-ray crystallography, PPh+
4
salts are of interest as they often crystallise easily. The rigidity of the phenyl groups facilitates packing and elevates the melting point relative to alkyl-based quaternary ammonium salts. Also, since these salts are soluble in organic media, a wide range of solvents can be employed for their crystallisation.

constituent ions in the solid
space-filling model of part
of the crystal structure
ball-and-stick model of part
of the crystal structure

Preparation

PPh4Cl and many analogous compounds can be prepared by the reaction of chlorobenzene with triphenylphosphine catalysed by nickel salts:[4]

PhCl + PPh3 → Ph4PCl

The compound was originally prepared as the corresponding bromide salt (CAS No. 2751-90-8), which in turn was synthesized by passing dry oxygen through the reaction of phenylmagnesium bromide and triphenylphosphine.[5] The synthesis probably proceeds via the reaction of the Grignard reagent with triphenylphosphine oxide.

PhMgBr + Ph3PO → Ph4POMgBr
Ph4POMgBr + HBr → Ph4PBr + "Mg(OH)Br"

References

  1. Richardson, J. F.; Ball, J. M.; Boorman, P. M. (1986). "Structure of Tetraphenylphosphonium Chloride". Acta Crystallographica C42: 1271–1272. doi:10.1107/S0108270186092612.
  2. Schweizer, E. E.; Baldacchini, C. J.; Rheingold, A. L. (1989). "Tetraphenylphosphonium Chloride Monohydrate, Tetraphenylphosphonium Bromide and Tetraphenylphosphonium Iodide". Acta Crystallographica C45: 1236–1239. doi:10.1107/S0108270189000363.
  3. Blake, A. J.; Garner, C. D.; Tunney, J. M. (2003). "Tetraphenylphosphonium Chloride Dihydrate". Acta Crystallographica E59: o9–o10. doi:10.1107/S1600536802021682.
  4. Marcoux, David; Charette, André B. (2008). "Nickel-Catalyzed Synthesis of Phosphonium Salts from Aryl Halides and Triphenylphosphine". Adv. Synth. Catal. 350: 2967–2974. doi:10.1002/adsc.200800542.
  5. Dodonow, J.; Medox, H. (1928). "Zur Kenntnis der Grignardschen Reaktion: Über die Darstellung von Tetraphenyl-phosphoniumsalzen". Berichte der deutschen chemischen Gesellschaft 61: 907–911. doi:10.1002/cber.19280610505.
This article is issued from Wikipedia - version of the Tuesday, April 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.