Thiol-yne reaction

The Thiol-yne reaction (also alkyne hydrothiolation) is an organic reaction between a thiol and an alkyne. The reaction product is an alkenyl sulfide.[1][2] The reaction was first reported in 1949 with thioacetic acid as reagent [3][4] and rediscovered in 2009 [5] It is used in click chemistry [6][7][8] and in polymerization, especially with dendrimers.

Thiol-yne reaction

This addition reaction is typically facilitated by a radical initiator or UV irradiation and proceeds through a sulfanyl radical species.With monoaddition a mixture of E/Z alkenes form. The mode of addition is anti-Markovnikov. The radical intermediate can engage in secondary reactions such as cyclisation.[9][10] With diaddition the 1,2-disulfide or the 1,1- dithioacetal forms. Reported catalysts for radical additions are triethylborane,[11] indium(III) bromide [12] and AIBN.[13] The reaction is also reported to be catalysed by cationic rhodium and iridium complexes,[14] by thorium and uranium complexes,[15] by rhodium complexes,[16][17][18] by caesium carbonate [19] and by gold.[20]

Ichinose et al. thiol-yne reaction 1987 [11]

Diphenyl disulphide reacts with alkynes to a 1,2-bis(phenylthio)ethylene.[21] Reported alkynes are ynamides [22]

Polymer chemistry

In polymer chemistry, systems have been described based on addition polymerisation with 1,4-benzenedithiol and 1,4-diethynylbenzene,[23][24] in the synthesis of other addition polymer systems [25] in the synthesis of dendrimers,[26][27][27][28][29] in star polymers,[30][31][32] in graft polymerisation,[33] block copolymers [34] and in polymer networks.[5] Another reported application is the synthesis of macrocycles via dithiol coupling.[35]

References

  1. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7
  2. Hoogenboom, Richard (2010). "Thiol-Yne Chemistry: A Powerful Tool for Creating Highly Functional Materials". Angewandte Chemie International Edition 49 (20): 3415–7. doi:10.1002/anie.201000401. PMID 20394091.
  3. Bader, H.; Cross, L. C.; Heilbron, Ian; Jones, E. R. H. (1949). "132. Researches on acetylenic compounds. Part XVIII. The addition of thiolacetic acid to acetylenic hydrocarbons. The conversion of monosubstituted acetylenes into aldehydes and 1 : 2-dithiols". Journal of the Chemical Society (Resumed): 619. doi:10.1039/JR9490000619.
  4. Bader, Henry (1956). "23. The addition of thiolacetic acid to ethynylcarbinols and the conversion of the adducts into aldols and ??-unsaturated aldehydes". Journal of the Chemical Society (Resumed): 116. doi:10.1039/JR9560000116.
  5. 1 2 Fairbanks, Benjamin D.; Scott, Timothy F.; Kloxin, Christopher J.; Anseth, Kristi S.; Bowman, Christopher N. (2009). "Thiol−Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks". Macromolecules 42 (1): 211–217. Bibcode:2009MaMol..42..211F. doi:10.1021/ma801903w. PMC 2651690. PMID 19461871.
  6. Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis Andrew B. Lowe, Charles E. Hoyle and Christopher N. Bowman J. Mater. Chem., 2010,20, 4745-4750 doi: 10.1039/B917102A
  7. Thiol-yne click coupling chemistry and recent applications in polymer and materials synthesis and modification Andrew B. Lowe Polymer Volume 55, Issue 22, 23 October 2014, Pages 5517–5549 doi:10.1016/j.polymer.2014.08.015
  8. Thiol-yne click polymerization BiCheng Yao, JingZhi Sun, AnJun Qin , Ben Zhong Tang Chinese Science Bulletin August 2013, Volume 58, Issue 22, pp 2711-2718 doi:10.1007/s11434-013-5892-1
  9. Montevecchi, P; Navacchia, M (1998). "Sulfanyl radical mediated cyclization of aminyl radicals". Tetrahedron Letters 39 (49): 9077. doi:10.1016/S0040-4039(98)01998-4.
  10. Taniguchi, Tsuyoshi; Fujii, Tatsuya; Idota, Atsushi; Ishibashi, Hiroyuki (2009). "Reductive Addition of the Benzenethiyl Radical to Alkynes by Amine-Mediated Single Electron Transfer Reaction to Diphenyl Disulfide". Organic Letters 11 (15): 3298–301. doi:10.1021/ol901084k. PMID 19719181.
  11. 1 2 Ichinose, Yoshifumi; Wakamatsu, Kuni; Nozaki, Kyoko; Birbaum, Jean-Luc; Oshima, Koichiro; Utimoto, Kiitiro (1987). "Et3B induced radical addition of thiols to acetylenes". Chemistry Letters (8): 1647. doi:10.1246/cl.1987.1647.
  12. Yadav, J. S.; Reddy, B. V. Subba; Raju, A.; Ravindar, K.; Baishya, Gakul (2007). "Hydrothiolation of Unactivated Alkynes Catalyzed by Indium(III) Bromide". Chemistry Letters 36 (12): 1474. doi:10.1246/cl.2007.1474.
  13. Benati, Luisa; Capella, Laura; Montevecchi, Pier Carlo; Spagnolo, Piero (1995). "Free-Radical Addition of Heteroarenethiols and Heteroarylmethanethiols to Hexyne and Phenylacetylene. Chemical Behavior of the Transient .beta.-Sulfanylvinyl Radicals". The Journal of Organic Chemistry 60 (24): 7941. doi:10.1021/jo00129a039.
  14. Field, Leslie D.; Messerle, Barbara A.; Vuong, Khuong Q.; Turner, Peter (2009). "Rhodium(I) and iridium(I) complexes containing bidentate phosphine-imidazolyl donor ligands as catalysts for the hydroamination and hydrothiolation of alkynes". Dalton Transactions (18): 3599–614. doi:10.1039/b821188d. PMID 19381423.
  15. Weiss, Charles J.; Wobser, Stephen D.; Marks, Tobin J. (2009). "Organoactinide-Mediated Hydrothiolation of Terminal Alkynes with Aliphatic, Aromatic, and Benzylic Thiols". Journal of the American Chemical Society 131 (6): 2062–3. doi:10.1021/ja808764q. PMID 19170549.
  16. Yang, Jun; Sabarre, Anthony; Fraser, Lauren R.; Patrick, Brian O.; Love, Jennifer A. (2009). "Synthesis of 1,1-Disubstituted Alkyl Vinyl Sulfides via Rhodium-Catalyzed Alkyne Hydrothiolation: Scope and Limitations". The Journal of Organic Chemistry 74 (1): 182–7. doi:10.1021/jo801644s. PMID 19053611.
  17. Sabarre, Anthony; Love, Jennifer (2008). "Synthesis of 1,1-Disubstituted Olefins via Catalytic Alkyne Hydrothiolation/Kumada Cross-Coupling". Organic Letters 10 (18): 3941–4. doi:10.1021/ol8012843. PMID 18702501.
  18. Cao, Changsheng; Fraser, Lauren R.; Love, Jennifer A. (2005). "Rhodium-Catalyzed Alkyne Hydrothiolation with Aromatic and Aliphatic Thiols". Journal of the American Chemical Society 127 (50): 17614–5. doi:10.1021/ja055096h. PMID 16351085.
  19. Kondoh, Azusa; Takami, Kazuaki; Yorimitsu, Hideki; Oshima, Koichiro (2005). "Stereoselective Hydrothiolation of Alkynes Catalyzed by Cesium Base: Facile Access to (Z)-1-Alkenyl Sulfides". The Journal of Organic Chemistry 70 (16): 6468–73. doi:10.1021/jo050931z. PMID 16050711.
  20. Corma, Avelino; González-Arellano, Camino; Iglesias, Marta; Sánchez, Félix (2010). "Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble and heterogenized gold complexes catalysts". Applied Catalysis A: General 375: 49. doi:10.1016/j.apcata.2009.12.016.
  21. Benati, Luisa; Montevecchi, Pier Carlo; Spagnolo, Piero (1991). "Free-radical reactions of benzenethiol and diphenyl disulphide with alkynes. Chemical reactivity of intermediate 2-(phenylthio)vinyl radicals". Journal of the Chemical Society, Perkin Transactions 1 (9): 2103. doi:10.1039/P19910002103.
  22. Sato, Akinori; Yorimitsu, Hideki; Oshima, Koichiro (2010). "Radical Additions of Arenethiols to Ynamides for the Selective Synthesis of N-[(Z)-2-(Arylsulfanyl)-1-alkenyl]amides". Bulletin of the Korean Chemical Society 31 (3): 570. doi:10.5012/bkcs.2010.31.03.570.
  23. Ohashi, Toyoshi; Kobayashi, Eiichi; Jinbo, Tomoko; Furukawa, Junji (1997). "The crystal structure of 1,4-benzenedithiol by rietveld analysis and studies on the mechanism of solid-state addition polymerization of 1,4-benzenedithiol to 1,4-diethynylbenzene". Journal of Polymer Science Part A: Polymer Chemistry 35 (9): 1621. Bibcode:1997JPoSA..35.1621O. doi:10.1002/(SICI)1099-0518(19970715)35:9<1621::AID-POLA3>3.0.CO;2-U.
  24. Kobayashi, Eiichi; Yoshino, Toshizumi; Aoshima, Sadahito; Furukawa, Junji (1995). "Addition polymerization of 2-cyano-1, 4-benzenedithiol to 1,4-diethynylbenzene and properties of polymers". Journal of Polymer Science Part A: Polymer Chemistry 33 (14): 2403. Bibcode:1995JPoSA..33.2403K. doi:10.1002/pola.1995.080331413.
  25. Catalyst-Free Thiol–Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s Bicheng Yao, Ju Mei, Jie Li, Jian Wang, Haiqiang Wu, Jing Zhi Sun, Anjun Qin, and Ben Zhong Tang Macromolecules 2014 47 (4), 1325-1333 doi:10.1021/ma402559a
  26. Konkolewicz, Dominik; Gray-Weale, Angus; Perrier, SéBastien (2009). "Hyperbranched Polymers by Thiol−Yne Chemistry: From Small Molecules to Functional Polymers". Journal of the American Chemical Society 131 (50): 18075–7. doi:10.1021/ja908206a. PMID 19947636.
  27. 1 2 Chen, Gaojian; Kumar, Jatin; Gregory, Andrew; Stenzel, Martina H. (2009). "Efficient synthesis of dendrimers via a thiol–yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs". Chemical Communications (41): 6291–3. doi:10.1039/b910340f. PMID 19826698.
  28. Semsarilar, Mona; Ladmiral, Vincent; Perrier, SéBastien (2010). "Highly Branched and Hyperbranched Glycopolymers via Reversible Addition−Fragmentation Chain Transfer Polymerization and Click Chemistry". Macromolecules 43 (3): 1438. Bibcode:2010MaMol..43.1438S. doi:10.1021/ma902587r.
  29. Yu, Bing; Chan, Justin W.; Hoyle, Charles E.; Lowe, Andrew B. (2009). "Sequential thiol-ene/thiol-ene and thiol-ene/thiol-yne reactions as a route to well-defined mono and bis end-functionalized poly(N-isopropylacrylamide)". Journal of Polymer Science Part A: Polymer Chemistry 47 (14): 3544. Bibcode:2009JPoSA..47.3544Y. doi:10.1002/pola.23436.
  30. Thiol–yne ‘click’ chemistry as a route to functional lipid mimetics Sandeep S. Naik, Justin W. Chan, Christopher Comer, Charles E. Hoyle and Daniel A. Savin Polym. Chem., 2011, doi:10.1039/C0PY00231C
  31. Luminescent Hyperbranched Polymers: Combining Thiol-Yne Chemistry with Gold-Mediated C−H Bond Activation Dominik Konkolewicz, Sylvain Gaillard, Andrew G. West, Yuen Yap Cheng, Angus Gray-Weale, Timothy W. Schmidt, Steven P. Nolan, and Sbastien Perrier Organometallics, Article ASAP doi:10.1021/om200103f
  32. Stimuli-responsive star polymers through thiol–yne core functionalization/crosslinking of block copolymer micelles doi:10.1039/C1PY00002K
  33. Hensarling, Ryan M.; Doughty, Vanessa A.; Chan, Justin W.; Patton, Derek L. (2009). ""Clicking" Polymer Brushes with Thiol-yne Chemistry: Indoors and Out". Journal of the American Chemical Society 131 (41): 14673–5. doi:10.1021/ja9071157. PMID 19778016.
  34. Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties Dominik Konkolewicz, Cheuk Ka Poon, Angus Gray-Weale and Sébastien Perrier Chem. Commun., 2010
  35. Synthesis of Sulfuric Macrocycles and a Rotaxane through Thiol-yne Click and Dithiol Coupling Reactions Weidong Zhou, Haiyan Zheng, Yongjun Li, Huibiao Liu and Yuliang Li 2010 Org. Lett. doi:10.1021/ol1014569

See also

This article is issued from Wikipedia - version of the Wednesday, March 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.