Tom Bridgeland

Tom Bridgeland

Tom Bridgeland in 2014, portrait via the Royal Society
Born Thomas Andrew Bridgeland
1973 (age 4243)
Institutions
Alma mater
Thesis Fourier-Mukai transforms for surfaces and moduli spaces of stable sheaves (2002)
Doctoral advisor Antony Maciocia[1]
Doctoral students
Notable awards

Website

Thomas Andrew Bridgeland FRS[4] (born 1973) is a Professor of Mathematics at the University of Sheffield.[1][5][6][7][8][9][10]

Education

Bridgeland was educated at Shelley High School[9] in Huddersfield and Christ's College, Cambridge where he studied the Cambridge Mathematical Tripos graduating with first class Bachelor of Arts degree with honours in Mathematics in 1995. He completed his PhD[11] at the University of Edinburgh, where he also stayed for a postdoctoral research position.

Research

His research interest is algebraic geometry, focusing on properties of derived categories of coherent sheaves on algebraic varieties. [12][13] His most-cited papers are on stability conditions, on triangulated categories [14] and K3 surfaces;[15] in the first he defines the idea of a 'stability condition' on a triangulated category, and demonstrates that the set of all stability conditions on a fixed category form a manifold, whilst in the second he describes one connected component of the space of stability conditions on the bounded derived category of coherent sheaves on a complex algebraic K3 surface.

Bridgeland's research has been funded by the Engineering and Physical Sciences Research Council (EPSRC).[16]

Awards and honours

Bridgeland won the Adams Prize in 2007 and was elected a Fellow of the Royal Society (FRS) in 2014. His nomination reads

Tom Bridgeland has established the coherent derived category as a key invariant of algebraic varieties and stimulated world-wide enthusiasm for what had previously been a technical backwater. His results on Fourier-Mukai transforms solve many problems within algebraic geometry, and have been influential in homological and commutative algebra, orbifold and quantum cohomology, minimal model program, classification of Fano varieties, moduli constructions, representation theory and combinatorics. Bridgeland's 2002 Annals paper introduced spaces of stability conditions on triangulated categories, replacing the traditional rational slope of moduli problems by a complex phase. This far-reaching innovation gives rigorous mathematical content to work on D-branes and creates a new area of deep interaction between theoretical physics and algebraic geometry. It has been a central component of subsequent work on homological mirror symmetry.[4]

References

  1. 1 2 3 Tom Bridgeland at the Mathematics Genealogy Project
  2. Calabrese, John (2012). In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants (DPhil thesis). University of Oxford.
  3. Sutherland, Tom (2014). Stability conditions for Seiberg-Witten quivers (PhD thesis). University of Sheffield.
  4. 1 2 "Professor Tom Bridgeland FRS". Royal Society. Retrieved 2014-05-02.
  5. List of publications from Microsoft Academic Search
  6. Tom Bridgeland's publications indexed by Google Scholar, a service provided by Google
  7. Tom Bridgeland's publications indexed by the Scopus bibliographic database, a service provided by Elsevier.
  8. Bridgeland, T. (2002). "Flops and derived categories". Inventiones Mathematicae 147 (3): 613. doi:10.1007/s002220100185.
  9. 1 2 Tom bridgeland CV
  10. Tom Bridgeland publications
  11. Bridgeland, Thomas Andrew (1998). Fourier-Mukai Transforms for Surfaces and Moduli Spaces of Stable Sheaves (PhD thesis). University of Edinburgh.
  12. Bridgeland, T.; King, A.; Reid, M. (2001). "The McKay correspondence as an equivalence of derived categories". Journal of the American Mathematical Society 14 (3): 535. doi:10.1090/S0894-0347-01-00368-X.
  13. Bridgeland, T. (2005). "T-structures on some local Calabi–Yau varieties". Journal of Algebra 289 (2): 453. doi:10.1016/j.jalgebra.2005.03.016.
  14. Bridgeland, Tom. "Stability conditions on triangulated categories". arXiv:math/0212237v3.
  15. Bridgeland, T. (2008). "Stability conditions on K3 surfaces". Duke Mathematical Journal 141 (2): 241. arXiv:math/0212237v3. doi:10.1215/S0012-7094-08-14122-5.
  16. Grants awarded to Tom Bridgeland by the UK Government, via Research Councils UK


This article is issued from Wikipedia - version of the Monday, May 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.