Toxic waste
Toxic waste is any material in liquid, solid, or gas form that can cause serious harm to humans as well as other animals and the environment. The materials are poisonous byproducts as a result of industries such as manufacturing, farming, construction, automotive, laboratories, and hospitals which may contain chemicals, heavy metals, radiation, dangerous pathogens, or other toxins. Toxic waste has become more abundant since the industrialized revolution, causing serious health issues that affect the entire world. Disposing of such waste has become even more critical with the addition of numerous technological advances containing toxic chemical components. Products such as cellular telephones, computers, televisions, and solar panels contain toxic chemicals that can harm the environment if not disposed of properly to prevent the pollution of the air and contamination of soils and water. A material is considered toxic when it causes death or harm by being inhaled, swallowed, or absorbed through the skin.
The waste can contain chemicals, heavy metals, radiation, dangerous pathogens, or other toxins. Even households generate hazardous waste from items such as batteries, used computer equipment, and leftover paints or pesticides.[1] Toxic material can be either human-made and others are naturally occurring in the environment. Not all hazardous substances are considered toxic.
The United Nations Environment Programme (UNEP) has identified 11 key substances that pose a risk to human health:
- Arsenic: used in making electrical circuits, as an ingredient in pesticides, and as a wood preservative. It is classified as a carcinogen.
- Asbestos: is a material that was once used for the insulation of buildings, and some businesses are still using this material to manufacture roofing materials and brakes. Researchers have found that inhalation of asbestos fibers can lead to lung cancer and asbestosis.
- Cadmium: is found in batteries and plastics. It can be inhaled through cigarette smoke, or digested when included as a pigment in food. Exposure leads to lung damage, irritation of the digestive track, and kidney disease.
- Chromium: is used as brick lining for high-temperature industrial furnaces, as a solid metal used for making steel, and in chrome plating, manufacturing dyes and pigments, wood preserving, and leather tanning. It is known to cause cancer, and prolonged exposure can cause chronic bronchitis and damage lung tissue.
- Clinical wastes: such as syringes and medication bottles can spread pathogens and harmful microorganisms, leading to a variety of illnesses.
- Cyanide: a poison found in some pesticides and rodenticides. In large doses it can lead to paralysis, convulsions, and respiratory distress.
- Lead: is found in batteries, paints, and ammunition. When ingested or inhaled can cause harm to the nervous and reproductive systems, and kidneys.
- Mercury: used for dental fillings and batteries. It is also used in the production of chlorine gas. Exposure can lead to birth defects and kidney and brain damage
- PCBs, or polychlorinated biphenyls, are used in many manufacturing processes, by the utility industry, and in paints and sealants. Damage can occur through exposure, affecting the nervous, reproductive, and immune systems, as well as the liver.
- POPs, persistent organic pollutants. They are found in chemicals and pesticides, and may lead to nervous and reproductive system defects. They can bio-accumulate in the food chain or persist in the environment and be moved great distances through the atmosphere.
- Strong acids and alkalis used in manufacturing and industrial production. They can destroy tissue and cause internal damage to the body.
The most overlooked toxic and hazardous wastes are the household products in everyday homes that are improperly disposed of such as old batteries, pesticides, paint, and car oil. Toxic waste can be reactive, ignitable, and corrosive.These types of waste are regulated under the Resource Conservation and Recovery Act (RCRA)
- Reactive wastes are those that can cause explosions when heated, mixed with water or compressed. They can release toxic gases into the air. They are unstable even in normal conditions. An example is Lithium-Sulfur Batteries.
- Ignitable wastes have flash points of less than 60 degrees Celsius. They are very combustible and can cause fires. Examples would be solvents and waste oils.
- Corrosive wastes are liquids capable of corroding metal containers. These are acids or bases that has a PH level of less than or equal to 2 or greater than or equal to 12.5. An example is Battery Acid.
With the increasing worldwide technology there are more substances that are being considered toxic and harmful to human health. Some of this technology includes cell phones and computers. They have been given the name e-waste or EEE, which stands for Electrical and Electronic Equipment. This term is also used for goods such as refrigerators, toys, and washing machines. These items can contain toxic components inside which can break down into our water systems when discarded. The reduction in the cost of these goods has allowed for these items to be distributed globally without thought or consideration to managing the goods once they become ineffective or broken.
In the United States, the Environmental Protection Agency (EPA) and the state departments oversee the rules that regulate hazardous waste. The EPA requires that toxic waste be handled with special precautions and be disposed of in designated facilities around the country. Also, many cities in the United States have collection days where household toxic waste is gathered. Some materials that may not be accepted at regular landfills are ammunition, commercially generated waste, explosives/shock sensitive items, hypodermic needles/syringes, medical waste, radioactive materials, and smoke detectors.[2]
Health defects
Toxic wastes often contain carcinogens, and exposure to these by some route, such as leakage or evaporation from the storage, causes cancer to appear at increased frequency in exposed individuals. For example, a cluster of the rare blood cancer polycythemia vera was found around a toxic waste dump site in northeast Pennsylvania in 2008.[3]
The Human & Ecological Risk Assessment Journal conducted a study which focused on the health of individuals living near municipal landfills to see if it would be as harmful as living near hazardous landfills. They conducted a 7-year study that specifically tested for 18 types of cancers to see if the participants had higher rates than those that don’t live around landfills. They conducted this study in western Massachusetts within a 1-mile radius of the North Hampton Regional Landfill.[4]
People encounter these toxins buried in the ground, in stream runoff, in groundwater that supplies drinking water, or in floodwaters, as happened after Hurricane Katrina. Some toxins, such as mercury, persist in the environment and accumulate. As a result of the bioaccumulation of mercury in both freshwater and marine ecosystems, predatory fish are a significant source of mercury in human and animal diets.[5]
Handling and disposal
Disposal is the placement of waste into or on the land. Disposal facilities are usually designed to permanently contain the waste and prevent the release of harmful pollutants to the environment. The most common hazardous waste disposal practice is placement in a land disposal unit such as a landfill, surface impoundment, waste pile, land treatment unit, or injection well. Land disposal is subject to requirements under EPA’s Land Disposal Restrictions Program.[6]
Organic wastes can be destroyed by incineration at high temperatures;[7] however, if the waste contains heavy metals or radioactive isotopes, these must be separated and stored, as they cannot be destroyed.[8] The method of storage will seek to immobilize the toxic components of the waste, possibly through storage in sealed containers, inclusion in a stable medium such as glass or a cement mixture, or burial under an impermeable clay cap. Waste transporters and waste facilities may charge fees; consequently, improper methods of disposal may be used to avoid paying these fees. Where the handling of toxic waste is regulated, the improper disposal of toxic waste may be punishable by fines[5] or prison terms. Burial sites for toxic waste and other contaminated brownfield land may eventually be used as greenspace or redeveloped for commercial or industrial use.
History of US toxic waste regulation
Resource Conservation and Recovery Act (RCRA) Enforcement,.[9] The Act gives the United States Environmental Protection Agency the authority to control the generation, transportation, treatment, storage, and disposal of hazardous waste[10] The Resource Conservation and Recovery Act was followed by the Toxic Substances Control Act, which took effect on January 1, 1977. The Act authorized the EPA to secure information on all new and existing chemical substances, as well as to control any substances that were determined to cause unreasonable risk to public health or the environment.[11]
The Superfund Act is another act administered by the EPA. It contains rules about cleaning up toxic waste that was dumped illegally.[12]
There has been a long ongoing battle between communities and environmentalists versus governments and corporations about how strictly and how fairly the regulations and laws are written and enforced. That battle began in North Carolina in the late summer of 1979, as EPA's TSCA regulations were being implemented. In North Carolina, 31,000 gallons of PCB-contaminated oil were deliberately dripped in a 3-foot swath along some 240 miles of rural Piedmont highways, creating the largest PCB spills in American history and a public health crisis that would have repercussions for generations to come. The PCB-contaminated material was eventually collected and buried in a landfill in Warren County, but citizens' opposition, including large public demonstrations, exposed the dangers of toxic waste, the fallibility of landfills then in use, and EPA regulations allowing landfills to be built on marginal, but politically acceptable sites.
Warren County citizens argued that the toxic waste landfill regulations were based on the fundamental assumption that the EPA's conceptual dry-tomb landfill would contain the toxic waste. This assumption informed the siting of toxic waste landfills and waivers to regulations that were included in EPA's Federal Register. For example, in 1978, the base of a major toxic waste landfill could be no closer than five feet from ground water, but this regulation and others could be waived. The waiver to the regulation concerning the distance between the base of a toxic waste landfill and groundwater allowed the base to be only a foot above ground water if the owner/operator of the facility could demonstrate to the EPA regional administrator that a leachate collection system could be installed and that there would be no hydraulic connection between the base of the landfill and groundwater. Citizens argued that the waivers to the siting regulations were discriminatory mechanisms facilitating the shift from scientific to political considerations concerning the siting decision and that in the South this would mean a discriminatory proliferation of dangerous waste management facilities in poor black and other minority communities. They also argued that the scientific consensus was that permanent containment could not be assured. As resistance to the siting of the PCB landfill in Warren County continued and studies revealed that EPA dry-tomb landfills were failing, EPA stated in its Federal Register that all landfills would eventually leak and should only be used as a stopgap measure.
Years of research and empirical knowledge of the failures of the Warren County PCB landfill led citizens of Warren County to conclude that the EPA's dry-tomb landfill design and regulations governing the disposal of toxic and hazardous waste were not based on sound science and adequate technology. Warren County's citizens concluded also that North Carolina's 1981 Waste Management Act was scientifically and constitutionally unacceptable because it authorized the siting of toxic, hazardous and nuclear waste facilities prior to public hearings, preempted local authority over the siting of the facilities, and authorized the use of force if needed.[13]
In the aftermath of the Warren County protests, the 1984 Federal Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act focused on waste minimization and phasing out land disposal of hazardous waste as well as corrective action for releases of hazardous materials. Other measures included in the 1984 amendments included increased enforcement authority for EPA, more stringent hazardous waste management standards, and a comprehensive underground storage tank program.[14]
The disposal of toxic waste continues to be a source of conflict in the U.S. Due to the hazards associated with toxic waste handling and disposal, communities often resist the siting of toxic waste landfills and other waste management facilities; however, determining where and how to dispose of waste is a necessary part of economic and environmental policy-making.[13]
Mapping of toxic waste in the United States
TOXMAP is a Geographic Information System (GIS) from the Division of Specialized Information Services[15] of the United States National Library of Medicine (NLM) that uses maps of the United States to help users visually explore data from the United States Environmental Protection Agency's (EPA) Superfund and Toxics Release Inventory programs. TOXMAP is a resource funded by the US Federal Government. TOXMAP's chemical and environmental health information is taken from NLM's Toxicology Data Network (TOXNET)[16] and PubMed, and from other authoritative sources.
See also
- Superfund
- List of Superfund sites in the United States
- Pollution
- Radioactive waste
- Hazardous waste
- Environmental remediation
- Agent Orange
- Red mud, a caustic byproduct of alumina production
References
- ↑ "Toxic Waste". National Geographic. 15 March 2012.
- ↑ "Household Hazardous Waste". Wake County Recycling and Solid Waste. 2009.
- ↑ MICHAEL RUBINKAM (2008). "Cancer cluster confirmed in northeast Pennsylvania". Associated Press.
- ↑ Goodman, Julie E., Todd C. Hudson, and Richard J. Monteiro. "Cancer Cluster Investigation In Residents Near A Municipal Landfill." Human & Ecological Risk Assessment 16.6 (2010): 1339-59. Academic Search Premier. Web. 15 Feb. 2012.>.
- 1 2 "Toxic Waste." National Geographic. National Geographic, 2010. Web. 26 Apr 2010. <http://environment.nationalgeographic.com/environment/global-warming/toxic-waste-overview.html>.
- ↑ .<http://www.epa.gov/osw/hazard/tsd/td/index.htm>.
- ↑ "High Temperature Incineration". Environmental Technology Council. Retrieved September 18, 2015.
- ↑ "Hazardous Waste Recycling Regulations". Environmental Protection Agency. Retrieved September 18, 2015.
- ↑ .<http://www.epa.gov/compliance/civil/rcra/index.html>.
- ↑ U.S. Environmental Protection Agency, Summary of the Resource Conservation and Recovery Act, http://www.epa.gov/lawsregs/laws/rcra.html
- ↑ US Environmental Protection Agency, TSCA Statute, Regulations & Enforcement, http://epa.gov/compliance/civil/tsca/tscaenfstatreq.html
- ↑ Szasz, Andrew. Ecopopulism: Toxic Waste and the Movement for Environmental Justice. Minnesota: Regents of the University of Minnesota, 1994. 137-145. Print.
- 1 2 .<http://www.ncpcbarchives.com>.
- ↑ .<http://www.epa.gov/lawsregs/laws/rcra.html>.
- ↑ "SIS Specialized Information System". United States National Library of Medicine. Retrieved 11 August 2010.
- ↑ "Toxnet". United States National Library of Medicine. Retrieved 11 August 2010.
External links
- Information on toxic waste from the CDC
- TOXMAP: Environmental Health e-maps from the US National Library of Medicine
- Toxic waste Argentinian law