Flood basalt

Moses Coulee in the US showing multiple flood basalt flows of the Columbia River Basalt Group. The upper basalt is Roza Member, while the lower canyon exposes Frenchmen Springs Member basalt

A flood basalt is the result of a giant volcanic eruption or series of eruptions that coats large stretches of land or the ocean floor with basalt lava. Flood basalt provinces such as the Deccan Traps of India are often called traps, which derives from the characteristic stairstep geomorphology of many associated landscapes. Rampino and Stothers (1988) cite eleven distinct flood basalt episodes occurring in the past 250 million years, creating large volcanic provinces, plateaus, and mountain ranges.[1] However, more have been recognized such as the large Ontong Java Plateau,[2] and the Chilcotin Group, though the latter may be linked to the Columbia River Basalt Group. Large igneous provinces have been connected to five mass extinction events, and may be associated with bolide impacts.[3]

Formation

The formation and effects of a flood basalt depend on a range of factors, such as continental configuration, latitude, volume, rate, duration of eruption, style and setting (continental vs. oceanic), the preexisting climate state, and the biota resilience to change.[4]

One proposed explanation for flood basalts is that they are caused by the combination of continental rifting and its associated decompression melting, in conjunction with a mantle plume also undergoing decompression melting, producing vast quantities of a tholeiitic basaltic magma. These have a very low viscosity, which is why they 'flood' rather than form taller volcanoes. Another explanation is that they result from the release, over a short time period, of melt that has accumulated in the mantle over a long time period.[5]

The Deccan Traps of central India, the Siberian Traps, and the Columbia River Plateau of western North America are three regions covered by prehistoric flood basalts. The Mesoproterozoic Mackenzie Large Igneous Province in Canada contains the Coppermine River flood basalts related to the Muskox layered intrusion. The maria on the Moon are additional, even more extensive, flood basalts. Flood basalts on the ocean floor produce oceanic plateaus.

The surface covered by one eruption can vary from around 200,000 km² (Karoo) to 1,500,000 km² (Siberian Traps). The thickness can vary from 2000 metres (Deccan Traps) to 12,000 m (Lake Superior). These are smaller than the original volumes due to erosion.

Petrography

Flood basalts have tholeiite and olivine compositions (according to the classification of Yoder and Tilley). The composition of the basalts from the Paraná is fairly typical of that of flood basalts; it contains phenocrysts occupying around 25% of the volume of rock in a fine-grained matrix. These phenocrysts are pyroxenes (augite and pigeonite), plagioclases, opaque crystals such as titanium rich magnetite or ilmenite, and occasionally some olivine. Sometimes more differentiated volcanic products such as andesites, dacites and rhyodacites have been observed, but only in small quantities at the top of former magma chambers.

Structures

Subaerial flood basalts can be of two kinds :

In the Massif Central in Auvergne, France, there is a good example of chaotic lava flow, produced by eruptions from Puy de la Vache and Puy de Lassolas.

Geochemistry

Multiple flood basalt flows of the Chilcotin Group, British Columbia, Canada

Geochemical analysis of the major oxides reveals a composition close to that of mid-ocean ridge basalts (MORB) but also close to that of ocean island basalts (OIB). These are in fact tholeiites with a silicon dioxide percentage close to 50%.

Two kinds of basaltic flood basalts can be distinguished :

The isotopic ratios 87Sr/86Sr and 206Pb/204Pb are different from that observed in general, which shows that the basalt flood magma was contaminated as it passed through the continental crust. It is this contamination that explains the difference between the two kinds of basalt mentioned above. The low phosphorus and titanium type has an excess of elements from the crust such as potassium and strontium.

The content in incompatible elements of flood basalts is lower than that of ocean island basalts, but higher than that of mid-ocean ridge basalts.

Other occurrences

Basalt floods on the planet Venus are larger than those on Earth.

List of flood basalts

Lava flows at Holuhraun, Iceland, September, 2014
Major flood basalts, large igneous provinces and traps; click to enlarge.

Representative continental flood basalts (also known as traps) and oceanic plateaus, arranged by chronological order, together forming a listing of large igneous provinces:[6]

Name Initial or peak activity (in Ma) Surface area (in thousands of km2) Associated event
Chilcotin Group 10 50
Columbia River Basalt Group 17 160 Yellowstone Hotspot[7][8]
Ethiopia-Yemen Continental Flood Basalts 31 600
North Atlantic Igneous Province (NAIP) 56 (Ph.2) 1300 Paleocene–Eocene Thermal Maximum[9]
Deccan Traps 66 1500 Cretaceous–Paleogene extinction event
Caribbean large igneous province 95 (Main) 2000 Cenomanian-Turonian boundary event (OAE 2)[9]
Kerguelen Plateau 119 1200 Aptian extinction[10]
Ontong-Java Plateau 120 (Ph.1) 2000 Selli event (OAE 1a)[9]
High Arctic Large Igneous Province (HALIP) 120-130 1000 Selli event (OAE 1a)[11]
Paraná and Etendeka Traps 132 1500
Karoo and Ferrar Provinces 183 3000 Toarcian turnover [12]
Central Atlantic Magmatic Province 201 11000 Triassic–Jurassic extinction event[13]
Siberian Traps 251 7000 Permian–Triassic extinction event[14]
Emeishan Traps 265 250 End-Capitanian extinction event[15]
Viluy Traps 373 320 Late Devonian extinction[16]
Arabian-Nubian Shield 850 2700
Mackenzie Large Igneous Province 1270 2700

See also

References

  1. Michael R. Rampino & Richard B. Stothers (1988). "Flood Basalt Volcanism During the Past 250 Million Years". Science 241 (4866): 663–668. Bibcode:1988Sci...241..663R. doi:10.1126/science.241.4866.663. PMID 17839077. PDF via NASA
  2. Neal, C.; Mahoney, J.; Kroenke, L. (1997). "The Ontong Java Plateau" (PDF). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph 100.
  3. Negi, J. G.; Agrawal, P. K.; Pandey, O. P.; Singh, A. P. (1993). "A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism". Physics of the Earth and Planetary Interiors 76 (3–4): 189. Bibcode:1993PEPI...76..189N. doi:10.1016/0031-9201(93)90011-W.
  4. David P.G. Bond & Paul B. Wignall (2014). "Large igneous provinces and mass extinctions: An update". GSA Special Papers: 590. doi:10.1130/2014.2505(02).
  5. Foulger, G.R. (2010). Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell. ISBN 978-1-4051-6148-0.
  6. Sur l'âge des trapps basaltiques (On the ages of flood basalt events); Vincent E. Courtillota & Paul R. Renneb; Comptes Rendus Geoscience; Vol: 335 Issue: 1, January, 2003; pp: 113-140
  7. M.A. Richards, R.A. Duncan, V.E. Courtillot; Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails; SCIENCE, VOL. 246 (1989) 103–108
  8. Barbara P. Nash, Michael E. Perkins, John N. Christensen, Der-Chuen Lee, & A.N. Halliday; The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas; Earth and Planetary Science Letters 247 (2006) 143–156
  9. 1 2 3 David Bond and Paul Wignall. "Large igneous provinces and mass extinctions: An update" (PDF). p. 17.
  10. Wallace, P. J.; Frey, F. A.; Weis, D.; Coffin, M. F. (2002). "Origin and Evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago: Editorial". Journal of Petrology 43 (7): 1105–1108. doi:10.1093/petrology/43.7.1105.
  11. Polteau, S.; Planke, S.; Faleide, J. I.; Svensen, H.; Myklebust, R. "The Cretaceous High Arctic Large Igneous Province" (PDF).
  12. Pálfy, József; Smith, Paul L. (August 2000). "Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism". Geology 28 (8): 747–750. doi:10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2.
  13. Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami7, Mohammed (2013). "Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province". Science 340 (6135): 941–945. Bibcode:2013Sci...340..941B. doi:10.1126/science.1234204. PMID 23519213.
  14. Campbell, I; Czamanske, G.; Fedorenko, V.; Hill, R.; Stepanov, V. (1992). "Synchronism of the Siberian Traps and the Permian-Triassic Boundary". Science 258 (5089): 1760–1763. doi:10.1126/science.258.5089.1760.
  15. Zhou, MF et al., (2002). "A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction". Earth and Planetary Science Letters.
  16. J, Ricci et al, (2013). "New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology.

External links

Wikimedia Commons has media related to Flood basalts.
This article is issued from Wikipedia - version of the Monday, April 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.